反函数例题讲解.doc
《反函数例题讲解.doc》由会员分享,可在线阅读,更多相关《反函数例题讲解.doc(9页珍藏版)》请在三一办公上搜索。
1、反函数例题讲解例1下列函数中,没有反函数的是( )(A) y = x21(x)(B) y = x3+1(xR)(C) (xR,x1)(D) 分析:一个函数是否具有反函数,完全由这个函数的性质决定判断一个函数有没有反函数的依据是反函数的概念从代数角度入手,可试解以y表示x的式子;从几何角度入手,可画出原函数图像,再作观察、分析作为选择题还可用特例指出不存在反函数本题应选(D)因为若y = 4,则由 得 x = 3由 得 x = 1 (D)中函数没有反函数如果作出 的图像(如图),依图更易判断它没有反函数例2求函数 (1x0)的反函数解:由 ,得: 1x2 = (1y)2, x2 = 1(1y)2
2、 = 2yy2 1x0,故 又 当 1x0 时, 01x21, 01,011,即 0y1 所求的反函数为 (0x1)由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: 把给出解析式中的自变量x当作未知数,因变量y当作系数,求出x = ( y ) 求给出函数的值域,并作为所得函数的定义域; 依习惯,把自变量以x表示,因变量为y表示,改换x = ( y )为y = ( x )例3已知函数 f ( x ) = x2 + 2x + 2(x1),那么 f 1 (2 )的值为_分析:依据f 1 (2 )这一符号的意义,本题可由f ( x )先求得f 1 ( x ),再求f 1 (2 )的值(略)依
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反函数 例题 讲解
链接地址:https://www.31ppt.com/p-4527008.html