历年中考数学图形证明题讲解.doc
《历年中考数学图形证明题讲解.doc》由会员分享,可在线阅读,更多相关《历年中考数学图形证明题讲解.doc(16页珍藏版)》请在三一办公上搜索。
1、历年中考数学重难点专题讲座第二讲 图形位置关系第一部分 真题精讲【例1】(2010,丰台,一模)已知:如图,AB为O的直径,O过AC的中点D,DEBC于点E(1)求证:DE为O的切线;(2)若DE=2,tanC=,求O的直径【思路分析】 本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证ODDE。至于第二问则重点考察直
2、径所对圆周角是90这一知识点。利用垂直平分关系得出ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。【解析】(1)证明:联结OD D为AC中点, O为AB中点, OD为ABC的中位线 ODBC DEBC, DEC=90.ODE=DEC=90. ODDE于点D. DE为O的切线 (2)解:联结DB AB为O的直径,ADB=90 DBAC CDB=90. D为AC中点, AB=AC在RtDEC中,DE=2 ,tanC=, EC=. (三角函数的意义要记牢) 由勾股定理得:DC=.在RtDCB 中, BD=由勾股定理得: BC=5.AB=BC=5. O
3、的直径为5. 【例2】(2010,海淀,一模)已知:如图,为的外接圆,为的直径,作射线,使得平分,过点作于点.(1)求证:为的切线;(2)若,求的半径. 【思路分析】本题是一道典型的用角来证切线的题目。题目中除垂直关系给定以外,就只给了一条BA平分CBF。看到这种条件,就需要大家意识到应该通过角度来证平行。用角度来证平行无外乎也就错角同位角相等,同旁角互补这么几种。本题中,连OA之后发现ABD=ABC,而OAB构成一个等腰三角形从而ABO=BAO,自然想到传递这几个角之间的关系,从而得证。第二问依然是要用角的传递,将已知角BAD通过等量关系放在ABC中,从而达到计算直径或半径的目的。【解析】证
4、明:连接. , . , . . . (得分点,一定不能忘记用错角相等来证平行) , . . 是O半径, 为O的切线. (2) ,, .由勾股定理,得. .(通过三角函数的转换来扩大已知条件) 是O直径, . .又 , , . (这一步也可以用三角形相似直接推出BD/AB=AB/AC=sinBAD)在Rt中,=5. 的半径为. 【例3】(2010,昌平,一模)已知:如图,点是的直径延长线上一点,点 在上,且(1)求证:是的切线;(2)若点是劣弧上一点,与相交 于点,且,求的半径长.【思路分析】 此题条件中有OA=AB=OD,聪明的同学瞬间就能看出来BA其实就是三角形OBD中斜边OD上的中线。那么
5、根据直角三角形斜边中线等于斜边一半这一定理的逆定理,马上可以反推出OBD=90,于是切线问题迎刃而解。事实上如果看不出来,那么连接OB以后像例2那样用角度传递也是可以做的。本题第二问则稍有难度,额外考察了有关圆周角的若干性质。利用圆周角相等去证明三角形相似,从而将未知条件用比例关系与已知条件联系起来。近年来中考围压缩,圆幂定理等纲外容已经基本不做要求,所以更多的都是利用相似三角形中借助比例来计算,希望大家认真掌握。【解析】(1)证明:连接.,.是等边三角形.,. . . (不用斜边中线逆定理的话就这样解,麻烦一点而已)又点在上,是的切线 . (2)解:是的直径, . 在中, , 设则, . .
6、 (设元的思想很重要), . ., .5分【例4】(2010,密云,一模)如图,等腰三角形中,以为直径作交于点,交于点,垂足为,交的延长线于点(1)求证:直线是的切线;(2)求的值【思路分析】本题和前面略有不同的地方就是通过线段的具体长度来计算和证明。欲证EF是切线,则需证OD垂直于EF,但是本题中并未给OD和其他线角之间的关系,所以就需要多做一条辅助线连接CD,利用直径的圆周角是90,并且ABC是以AC,CB为腰的等腰三角形,从而得出D是中点。成功转化为前面的中点问题,继而求解。第二问利用第一问的结果,转移已知角度,借助勾股定理,在相似的RT三角形当中构造代数关系,通过解方程的形式求解,也考
7、察了考生对于解三角形的功夫。【解析】(1)证明:如图,连结,则 , 是的中点是的中点,于F是的切线 ( 2 ) 连结,是直径, (直径的圆周角都是90)设,则在中,在中,(这一步至关重要,利用两相邻RT的临边构建等式,事实上也可以直接用直角三角形斜边高分比例的方法)解得即在中 【例5】2010,通州,一模如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与A相切,试判断GD与A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GCCD5,求AD的长.【思路分析】本题虽然是圆和平行四边形的位置关系问题,但是依然考察的是如何将
8、所有条件放在最基本的三角形中求解的能力。判断出DG与圆相切不难,难点在于如何证明。事实上,除本题以外,门头沟,石景山和宣武都考察了圆外一点引两条切线的证明。这类题目最重要是利用圆半径相等以及两个圆心角相等来证明三角形相似。第二问则不难,重点在于如何利用角度的倍分关系来判断直角三角形中的特殊角度,从而求解。【解析】(1)结论:与相切证明:连接点、在圆上,四边形是平行四边形, (做多了就会发现,基本此类问题都是要找这一对角,所以考生要善于把握已知条件往这个上面引)在和 与相切与相切 (2),四边形是平行四边形, (很多同学觉得题中没有给出特殊角度,于是无从下手,其实用倍分关系放在RT三角形中就产生
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年 中考 数学 图形 证明 讲解
链接地址:https://www.31ppt.com/p-4526770.html