等差数列的通项公式 课件.ppt
《等差数列的通项公式 课件.ppt》由会员分享,可在线阅读,更多相关《等差数列的通项公式 课件.ppt(19页珍藏版)》请在三一办公上搜索。
1、等差数列及其通项公式,一般地,如果一个数列 a1,a2,a3,an 从第二项起,每一项与它的前一项的差等于同一个常数d,a2 a1=a3-a2=an-an-1=d 那么这个数列就叫做等差数列。常数d叫做等差数列的公差。,知识回顾,an+1-an=d(nN*),通 项 公 式 的 推 导1(归纳猜想),设一个等差数列an的首项是a1,公差是d,则有:a2-a1=d,a3-a2=d,a4-a3=d,所以有:,an=a1+(n-1)d 当n=1时,上式也成立。,所以等差数列的通项公式是:an=a1+(n-1)d(nN*),问an=?通过观察:a2,a3,a4都可以用a1与d 表示出来;a1与d的系数
2、有什么特点?,a1、an、n、d知三求一,a2=a1+d,a3=a1+2d,a4=a1+3d,an=a1+(n-1)d,a2=a1+d,a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d,叠加得,等差数列的通项公式推导2(叠加),例第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算。(1)试写出由举行奥运会的年份构成的数列的通项公式(2)2008年北京奥运会是第几届?2050年举行奥运会吗?,解:(1)由题意知,举行奥运会的年份构成的数列是一个以1896为首项,4为公差的等差数列。这个数列的通项公式为 an=1
3、896+4(n-1)=1892+4n(nN*)(2)假设an=2008,由 2008=1892+4n,得 n=29.假设an=2050,2050=1892+4n 无正整数解答:所求通项公式为 an=1892+4n(nN*),2008年北京奥运会是第29届,2050年不举行奥运会,例.在等差数列an中,已知a3=10,a9=28,求a12。,推广:等差数列an中,am,an(nm)等差数列的通项公式一般形式:an=am+(nm)d.,解:由题意得,a1+2d=10a1+8d=28,所以a12=4+(12-1)3=37,注:a12=a1+11d=a1+2d+(12-3)d=a3+(12-3)d=a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列的通项公式 课件 等差数列 公式
链接地址:https://www.31ppt.com/p-4525716.html