原核基因表达的调控.ppt
《原核基因表达的调控.ppt》由会员分享,可在线阅读,更多相关《原核基因表达的调控.ppt(143页珍藏版)》请在三一办公上搜索。
1、2023/4/25,1,第九章 原核基因表达的调控,一、操纵子 二、乳糖操纵子的表达调控 三、色氨酸操纵子的表达调控 四、翻译水平的调控五、翻译后调控六、原核生物基因表达其他调控方式,2023/4/25,2,一、操纵子(operon),细菌能随环境的变化,迅速改变某些基因表达的状态,这就是很好的基因表达调控的实验模型。人们就是从研究这种现象开始,打开认识基因表达调控分子机理的窗口的。,2023/4/25,3,1.操纵子的提出,大肠杆菌可以利用葡萄糖、乳糖、麦芽糖、阿拉伯糖等作为碳源而生长繁殖,当培养基中含有葡萄糖和乳糖时,细菌优先利用葡萄糖,当葡萄糖耗尽,细菌停止生长,经过短时间的适应,就能利
2、用乳糖,细菌继续呈指数式繁殖增长。,2023/4/25,4,大肠杆菌利用乳糖至少需要两个酶:促使乳糖进入细菌的半乳糖透过酶(lactose permease)和催化乳糖分解第一步的 半乳糖苷酶(-galactosidase)。,2023/4/25,5,在环境中没有乳糖或其他-半乳糖苷时,大肠杆菌合成-半乳糖苷酶量极少,加入乳糖2-3分钟后,细菌大量合成-半乳糖苷酶,其量可提高千倍以上,在以乳糖作为唯一碳源时,菌体内的-半乳糖苷酶量可占到细菌总蛋白量的3%。在上述二阶段生长细菌利用乳糖再次繁殖前,也能测出细菌中-半乳糖苷酶活性显著增高的过程。,2023/4/25,6,这种典型的诱导现象,是研究基
3、因表达调控极好的模型。针对大肠杆菌利用乳糖的适应现象,法国的Jocob和Monod等人做了一系列遗传学和生化学研究实验,于1961年提出乳糖操纵子(lac operon)学说。,2023/4/25,7,2.操纵子的基本组成,乳糖操纵子模型已被许多研究实验所证实,对其有了更深入的认识,并且发现其他原核生物基因调控也有类似的操纵子组织,操纵子是原核基因表达调控的一种重要的组织形式,大肠杆菌的基因多数以操纵子的形式组成基因表达调控的单元。下面就以乳糖操纵子为例子说明操纵子的最基本的组成元件(elements)。,2023/4/25,8,(1)结构基因群,操纵子中被调控的编码蛋白质的基因可称为结构基因
4、(structural gene,SG)。一个操纵子中含有2个以上的结构基因,多的可达十几个。每个结构基因是一个连续的开放阅读框(open reading frame),5端有起始密码ATG,3端有终止密码TAA、TGA或TAG。各结构基因头尾衔接、串连排列,组成结构基因群。,2023/4/25,9,至少在第一个结构基因5侧具有核糖体结合位点(ribosome binding site,RBS),因而当这段含多个结构基因的DNA被转录成多顺反子mRNA,就能被核糖体所识别结合、并起始翻译。核糖体沿mRNA移动,在合成完第一个编码的多肽后,核糖体可以不脱离mRNA而继续翻译合成下一个基因编码的多
5、肽,直至合成完这条多顺反子mRNA所编码的全部多肽。,2023/4/25,10,乳糖操纵子含有、和3个结构基因。基因长3510bp,编码含1170个氨基酸、分子量为135,000的多肽,以四聚体形式组成有活性的-半乳糖苷酶,催化乳糖转变为别乳糖(allolactose),再分解为半乳糖和葡萄糖;,2023/4/25,11,基因长780bp,编码有260个氨基酸、分子量为30,000的半乳糖透过酶,促使环境中的乳糖进入细菌;基因长825bp,编码275氨基酸、分子量为32,000的转乙酰基酶,以二聚体活性形式催化半乳糖的乙酰化。,2023/4/25,12,基因5侧具有大肠杆菌核糖体识别结合位点(
6、RBS)特征的Shine-Dalgarno(SD)序列,因而当乳糖操纵子开放时,核糖体能结合在转录产生的mRNA上。由于、三个基因头尾相接,上一个基因的翻译终止密码靠近下一个基因的,2023/4/25,13,翻译起始密码,因而同一个核糖体能沿此转录生成的多顺反子(polycistron)mRNA移动,在翻译合成了上一个基因编码的蛋白质后,不从mRNA上掉下来而继续沿mRNA移动合成下一个基因编码的蛋白质,一气依次合成这基因群所编码所有的蛋白质。,2023/4/25,14,2023/4/25,15,(2)启动子,启动子(promoter,P)是指能被RNA聚合酶识别、结合并启动基因转录的一段DN
7、A序列。操纵子至少有一个启动子,一般在第一个结构基因5侧上游,控制整个结构基因群的转录。用RNA聚合酶与分离的一段DNA双链混合,再加入外切核酸酶去水解DNA,结果只有被RNA聚合酶识别结合而被保护的那段DNA不被水解,由此可以测出启动子的范围及其序列。,2023/4/25,16,虽然不同的启动子序列有所不同,但比较已经研究过的上百种原核生物的启动子的序列,发现有一些共同的规律,它们一般长40-60bp,含A-T bp较多,某些段落很相似的,有保守性,称为共有性序列(consensus sequences)。启动子一般可分为识别(R,recognition)、结合(B,binding)和起始(
8、I,initiation)三个区段。,2023/4/25,17,转录起始第一个碱基(通常标记位置为+1)最常见的是A;在-10bp附近有TATAAT一组共有序列,因为这段共有序列是Pribnow首先发现的,称为Pribnow盒(Pribnow box);在-35bp处又有TTGACA一组共有序列。,2023/4/25,18,2023/4/25,19,不同的启动子序列不同,与RNA聚合酶的亲和力不同、启动转录的频率高低不同,即不同的启动子起动基因转录的强弱不同,例如:PL、PR、PT7属强启动子,而Plac则是较弱的启动子。,2023/4/25,20,(3)操纵区,操纵区(operator)是指
9、能被调控蛋白特异性结合的一段DNA序列,常与启动子邻近或与启动子序列重叠,当调控蛋白结合在操纵子序列上,会影响其下游基因转录的强弱。,2023/4/25,21,以前将操纵区称为操纵基因(operator gene)。但现在基因定义是为蛋白质或RNA编码的核酸序列,而操纵序列并不是编码蛋白质的基因,却是起着调控基因表达强弱的作用,正如启动序列不叫启动基因而称为启动子一样,操纵序列就可称为操纵区。operon译为操纵子,即基因表达操纵的单元之意。,2023/4/25,22,以乳糖操纵子中的操纵区为例,其操纵区(o)序列位于启动子(p)与被调控的基因之间,部分序列与启动子序列重叠。仔细分析操纵区序列
10、,可见这段双链DNA具有回文(palindrome)样的对称性一级结构,能形成十字形的茎环(stem loop)构造。不少操纵区都具有类似的对称性序列,可能与特定蛋白质的结合相关。,2023/4/25,23,阻遏蛋白与操纵区结合,就妨碍了RNA聚合酶与启动子的结合及其后-半乳糖苷酶等基因的转录起始,从而阻遏了这群基因的表达。最早只把与阻遏蛋白结合、起阻遏作用的序列称为操纵区,但其后发现有的操纵子中,2023/4/25,24,同一操纵序列与不同构像的蛋白质结合,可以分别起阻遏或激活基因表达的作用,阿拉伯糖操纵子中的操纵序列就是典型的例子。因而凡能与调控蛋白特异性结合、从而影响基因转录强弱的序列,
11、不论其对基因转录的作用是减弱、阻止或增强、开放,都可称为操纵区。,2023/4/25,25,(4)调控基因,调控基因(regulatory gene)是编码能与操纵序列结合的调控蛋白的基因。调控蛋白有:阻遏蛋白(repressive protein):与操纵区结合后能减弱或阻止其调控的基因转录,其介导的调控方式为负调控(negative regulation);,2023/4/25,26,激活蛋白(activating protein):与操纵区结合后能增强或起动其调控的基因转录,所介导的调控方式为正调控(positive regulation)。,2023/4/25,27,某些特定的物质能与
12、调控蛋白结合,使调控蛋白的空间构像发生变化,从而改变其对基因转录的影响,这些特定物质可称为效应物(effector)。有两种:诱导剂(inducer):能引起诱导发生的分子;阻遏剂或辅助阻遏剂(corepressor):能导致阻遏发生的分子。,2023/4/25,28,例如在乳糖操纵子中,调控基因lac I位于Plac邻近,有其自身的启动子和终止子,转录方向和结构基因群的转录方向一致,编码产生由347个氨基酸组成的调控蛋白R。在环境没有乳糖存在的情况下,R形成分子量为152,000的活性四聚体,能特异性与操纵区紧密结合,从而阻止利用乳糖的酶类基因的转录,所以R是乳糖操纵子的阻遏蛋白;,2023
13、/4/25,29,当环境中有足够的乳糖时,乳糖与R结合,使R的空间构像变化,四聚体解聚成单体,失去与操纵区特异性紧密结合的能力,从而解除了阻遏蛋白的作用,使其后的基因得以转录合成利用乳糖的酶类。在这过程中乳糖就是诱导剂,与R结合起到去阻遏作用(derepression),诱导了利用乳糖的酶类基因转录开放。,2023/4/25,30,许多调控蛋白都是变构蛋白(allosteric protein),通过与上述类似的方式与效应物结合改变空间构像,从而改变活性,起到调节基因转录表达的作用。,2023/4/25,31,(5)终止子,终止子(terminator,T)是给予RNA聚合酶转录终止信号的DN
14、A序列。在一个操纵子中至少在结构基因群最后一个基因的后面有一个终止子。,2023/4/25,32,终止子至少可以分为两类:一类是不依赖因子(蛋白性终止因子)的终止子,这类终止子在序列上有一些共通的特点,即有一段富含GC的反向重复序列(inverted repeat sequence),其后跟随一段富含AT的序列,因而转录生成的mRNA的序列中能形成发夹式结构,后继一连串U,,2023/4/25,33,正是RNA聚合酶转录生成的这段mRNA的结构阻止RNA聚合酶继续沿DNA移动、并使聚合酶从DNA链上脱落下来,终止转录。另一类是依赖因子的终止子,即其终止转录的作用需要因子的协同,或至少是受因子的
15、影响。,2023/4/25,34,2023/4/25,35,不同的终止子的作有强弱之分:有的终止子几乎能完全停止转录;有的则只是部分终止转录,一部分RNA聚合酶能越过这类终止序列继续沿DNA移动并转录。如果一串结构基因群中间有这种弱终止子的存在,则前后转录产物的量会有所不同,这也是终止子调节基因群中不同基因表达产物比例的一种方式。,2023/4/25,36,有的蛋白因子能作用于终止序列,减弱或取消终止子的作用,称为抗终止作用(antitermination),这种蛋白因子就称为抗终止因子(antiterminator)。以上5种元件是每一个操纵子必定含有的。其中启动子、操纵区位于紧邻结构基因群
16、的上游,终止子在结构基因群之后,,2023/4/25,37,它们都在结构基因的附近,只能对同一条DNA链上的基因表达起调控作用,这种作用在遗传学实验上称为顺式作用(cis-action),启动子、操纵子和终止子就属于顺式作用元件(cis-acting element)。调控基因可以在结构基因群附近、也可以远离结构基因,它是通过其基因产物调控蛋白来发挥作用的,因而调控基因不仅能对同一条DNA链上的结构基因起表达调控作用,而且,2023/4/25,38,能对不在一条DNA链上的结构基因起作用,在遗传学实验上称为反式作用(trans-action),调控基因就属于反式作用元件(trans-actin
17、g element),其编码产生的调控蛋白称为反式调控因子(trans-acting factor)。由此也可窥测到基因表达调控机理的关键在蛋白质与核酸的相互作用上。,2023/4/25,39,二、乳糖操纵子的表达调控,2023/4/25,40,2023/4/25,41,2023/4/25,42,1.阻遏蛋白的负调控,当大肠杆菌在没有乳糖的环境中生存时,lac操纵子处于阻遏状态。此基因在其自身的启动子Pi控制下,低水平、组成性表达产生阻遏蛋白R,每个细胞中仅维持约10个分子的阻遏蛋白。R以四聚体形式与操纵子结合,阻碍了RNA聚合酶与启动子Plac的结合,阻止了基因的转录起动。R的阻遏作用不是绝
18、对的,R与,2023/4/25,43,偶尔解离,使细胞中还有极低水平的半乳糖苷酶及透过酶的生成。当有乳糖存在时,乳糖受 半乳糖苷酶的催化转变为别乳糖,与R结合,使R构象变化,R四聚体解聚成单体,失去与的亲和力,与解离,基因转录开放,使 半乳糖苷酶在细胞内的含量可增加1000倍。这就是乳糖对lac操纵子的诱导作用。,2023/4/25,44,2023/4/25,45,一些化学合成的乳糖类似物,不受 半乳糖苷酶的催化分解,却也能与R特异性结合使R构象变化,诱导lac操纵子的开放。例如异丙基硫代半乳糖苷(isopropylthiog-alactoside,IPTG)就是很强的诱导剂;不被细菌代谢而十
19、分稳定。X-gal(5-溴-4-氯-3-吲哚-半乳糖苷)也是一种人工化学合成的半乳糖苷,可被 半乳糖苷酶水解产生兰色化合物,因此可以用作 半乳糖苷酶活性的指示剂。IPTG和X-gal都被广泛应用在分子生物学和基因工程的工作中。,2023/4/25,46,2023/4/25,47,2.CAP的正调控,细菌中的cAMP含量与葡萄糖的分解代谢有关,当细菌利用葡萄糖分解产生能量时,cAMP生成少而分解多,cAMP含量低;相反,当环境中无葡萄糖可供利用时,cAMP含量就升高。细菌中有一种能与cAMP特异结合的cAMP受体蛋白CRP(cAMP receptor protein),当CRP未与cAMP结合时
20、它是没有活性的,当cAMP浓度升高时,CRP与cAMP结合并发生空间构象的变化而活化,称为CAP(CRP-cAMP activated protein),能以二聚体的方式与特定的DNA序列结合。,2023/4/25,48,在lac操纵子的启动子Plac上游端有一段序列与Plac部分重叠的序列,能与CAP特异结合,称为CAP结合位点(CAP binding site)。CAP与这段序列结合时,可增强RNA聚合酶的转录活性,使转录提高50倍。相反,当有葡萄糖可供分解利用时,cAMP浓度降低,CRP不能被活化,lac操纵子的结构基因表达下降。,2023/4/25,49,2023/4/25,50,由于
21、Plac是弱启动子,单纯因乳糖的存在发生去阻遏使lac操纵子转录开放,还不能使细菌很好利用乳糖,必需同时有CAP来加强转录活性,细菌才能合成足够的酶来利用乳糖。lac操纵子的强诱导既需要有乳糖的存在又需要没有葡萄糖可供利用。通过这机制,细菌是优先利用环境中的葡萄糖,只有无葡萄糖而又有乳糖时,细菌才去充分利用乳糖。,2023/4/25,51,细菌对葡萄糖以外的其他糖(如阿拉伯糖、半乳糖、麦芽糖等)的利用上也有类似对乳糖利用的情况,在含有编码利用阿拉伯糖的酶类基因群的阿拉伯糖操纵子(ara operon)、半乳糖操纵子(gal operon)中也有CAP结合位点,CAP也起类似的正性调控作用。所以
22、CAP的通用名称是分解代谢基因激活蛋白(catabolic gene activator protein)。,2023/4/25,52,不难看出:CAP结合位点就是一种起正性调控作用的操纵子,CAP则是对转录起正性作用的调控蛋白激活蛋白,编码CRP的基因也是一个调控基因,不过它并不在lac操纵子的附近,CAP可以对几个操纵子都起作用。从上所述,乳糖操纵子属于可诱导操纵子(inducible operon),这类操纵子通常使是关闭的,当受效应物作用后诱导开放转录。这类操纵子使细菌能适应环境的变化,最有效地利用环境能提供的能源底物。,2023/4/25,53,乳糖操纵子的诱导,2023/4/25,
23、54,图例说明:一些基因调控蛋白可以控制基因转录的开启和关闭,大肠杆菌的乳糖操纵子就是这样一个双重控制的例子。葡萄糖和半乳糖的水平控制着乳糖操纵子转录的起始,决定操纵子是“开”还是“关”。1.培养大肠杆菌时,如果不加入半乳糖,一个抑制蛋白就会结合到操纵子上,阻止RNA聚合酶转录操纵子基因。此时操纵子就处于关闭状态;2.当加入诱导物半乳糖后,半乳糖就会和抑制蛋白结合,并改变抑制蛋白的构象使得它不能结合到操纵子上。只要没有抑制蛋白的结合,RNA聚合酶就可以识别启动子并转录操纵子的结构基因,得到mRNA。此时操纵子是开启的。,2023/4/25,55,三、色氨酸操纵子的表达调控,2023/4/25,
24、56,色氨酸是构成蛋白质的组分,一般的环境难以给细菌提供足够的色氨酸,细菌要生存繁殖通常需要自己经过许多步骤合成色氨酸,但是一旦环境能够提供色氨酸时,细菌就会充分利用外界的色氨酸、减少或停止合成色氨酸,以减轻自己的负担。细菌所以能做到这点是因为有色氨酸操纵子(trp operon)的调控。,2023/4/25,57,1.色氨酸操纵子的结构,2023/4/25,58,2.阻遏蛋白的负调控,合成色氨酸所需要酶类的基因E、D、C、B、A等头尾相接串连排列组成结构基因群,受其上游的启动子Ptrp和操纵子的调控,调控基因trpR的位置远离P-结构基因群,在其自身的启动子作用下,以组成性方式低水平表达其编
25、码分子量为47000的调控蛋白R,R并没有与结合的活性,当环境能提供足够浓度的色氨酸时,R与色氨酸结合后构象变化而活化,就能够与特异性亲和结合,阻遏结构基因的转录。,2023/4/25,59,因此色氨酸操纵子属于一种负性调控的、可阻遏的操纵子(repressible operon),即这操纵子通常是开放转录的,有效应物(色氨酸为阻遏剂)作用时则阻遏关闭转录。细菌不少生物合成系统的操纵子都属于这种类型,其调控可使细菌处在生存繁殖最经济最节省的状态。,2023/4/25,60,3.衰减子及其作用,实验观察表明:当色氨酸达到一定浓度、但还没有高到能够活化R使其起阻遏作用的程度时,产生色氨酸合成酶类的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基因 表达 调控
链接地址:https://www.31ppt.com/p-4517951.html