《一元一次方程总复习.ppt》由会员分享,可在线阅读,更多相关《一元一次方程总复习.ppt(23页珍藏版)》请在三一办公上搜索。
1、,一元一次方程整理与复习(2),人教版七年级数学上册,走进数学你会发觉生活中处处都有她的身影;你会发现许多令人惊喜的东西;你还会感到自己变得越来越聪明、越来越有本领。许多以前不会解决的问题,现在都可以轻松应对了!,1、复习与整理一元一次方程这一章节的相 关内容,进一步掌握相关概念和性质。2、进一步熟悉解一元一次方程的一般步骤,会熟练解一元一次方程。3、会灵活运用知识解决相关问题。,学习目标,一元一次方程,去括号,一元一次方程,等式的性质,性质2,移项,合并同类项,系数化1,2.分子是多项式要加括号,变号,去分母,1.每一项都乘所有的分母的最小公倍数,1.括号前是加号,2.括号前是减号,方程的解
2、,方程,ax=b,(x=),知识结构:,一元一次方程,方程,一元一次方程,等式的性质,解一元一次方程,一元一次方程的应用,依据概念解答相关问题,一元一次方程的求解,方程的解,1、已知下列方程:(A)x+1=3(B)x-2y=3(C)(D)(E)(F)3x+31其中是一元一次方程的有(填序号),A,E,双基巩固,2、写一个根为 的一元一次方程是。,3、已知方程 的解是,则。,-3.5,1、已知下列方程:(A)x+1=3(B)x-2y=3(C)x(x+1)=2(D)(E)(F)3x+31其中是一元一次方程的有(填序号),A、E,巩固练习,-3.5,(2)如果关于 的方程 是一元一次方程,那么。(3
3、)写一个根为 的一元一次方程是。(4)已知方程 的解是,则。,题组二:解下列方程:(1)(2)(3)(4)(5),题组三:(方程的简单应用)(1)若。(2)若 是同类项,则2m-3n=。(3)代数式x+6与3(x+2)的值互为相反数,则x的值为。(4)若 与 互为倒数,则x=。,-3,-4,-1.5,-3,(1)若。(2)若 是同类项,则2m-3n=。(3)代数式x+6与3(x+2)的值互为相反数,则x的值为。(4)若 与 互为倒数,则x=。,-3,-4,-1.5,-3,能力提升,变式训练,1、如果关于 的方程 是一元一次方程,那么 _.,2、如果关于 的方程 是一元一次方程,那么 _.,3、
4、如果关于 的方程 是一元一次方程,那么 _.,3,+3或-3,-3,在方程两边都乘以各分母的最小公倍数,等式性质2,1.不要漏乘不含分母的项,一般先去小括号,再去中括号,最后去大括号,分配律 去括号法则,1.不要漏乘括号中的每一项,把含有未知数的项移到方程一边,其它项都移到方程另一边,注意移项要变号,移项法则,1.“过桥”的项一定要变号,不移的项不变号,2.注意移项较多时不要漏项,把方程变为ax=b(a0)的最简形式,合并同类项法则,2.字母和字母的指数不变,将方程两边都除以未知数系数a,得解x=b/a,等式性质2,解的分子,分母位置不要颠倒,1.把系数相加,2.分子是一个多项式时要加上括号,
5、2.括号前是减号,各项要变号,知识梳理,1解方程:,典型例析,解:,去分母,得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:,2、解方程,解:,去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得,整理,得,(分数的基本性质),能力提升,解:,1、解关于X的方程:,拓展训练,解:,含绝对值的方程,2、解方程:,总结反思,能力提高,通过学习,你有哪些收获和困惑?,当堂检测,1、如果b2a5b25,那么a的值()A、5 B、5 C、10 D、10,D,D,2、若方程3x511与6x3a22的解相同,则a的值为()A、3 B、10 C、D、,3、方程 x a=7 的解是x=2,则a=()A.1,B.1,C.5,D.5,4.“*”是新规定的某种运算符号,设x*y=x+y,则(-2)*m=8中,m的值为。,10,D,5、若关于x的方程3x+8=m+3与方程x-2m-5=0有相同的根,则x=,m=.,-3-4,6、若方程 3x4m-7+5=0 是一元一次方程,则 m=.,2,7、解方程,8、智力闯关:,-2,1或-2,2,第一关:是关于x的一元一次方程,则k=_,第二关:是关于x的一元一次方程,则k=_,第三关:是关于x的一元一次方程,则k=_:,A:课本复习题3,B:课本 习题3.3,分层作业,C:课本习题3.3的13题,再见,
链接地址:https://www.31ppt.com/p-4512311.html