等差数列求和教案.doc
《等差数列求和教案.doc》由会员分享,可在线阅读,更多相关《等差数列求和教案.doc(5页珍藏版)》请在三一办公上搜索。
1、 等差数列求和教学目标 1.掌握等差数列前 项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式;(2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;(3)会利用等差数列通项公式与前 项和的公式研究 的最值.2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.
2、4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.教学建议(1)知识结构本节内容是等差数列前 项和公式的推导和应用,首先通过具体的例子给出了求等差数列前 项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题(2)重点、难点分析教学重点是等差数列前 项和公式的推导和应用,难点是公式推导的思路推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的
3、过程中所蕴含的思想方法比公式本身更为重要等差数列前 项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前 项和公式与通项公式的综合运用体现了方程(组)思想高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上(3)教法建议本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前 项和公式综合运用.前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.强调从特殊到一般,再从一般到特殊的思考方法与研究方法.补充等差数列前 项和的最大值、最小值问题.用梯形面积公式记忆等差数列前
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 求和 教案
链接地址:https://www.31ppt.com/p-4394751.html