《探索勾股定理(二)课件.ppt》由会员分享,可在线阅读,更多相关《探索勾股定理(二)课件.ppt(18页珍藏版)》请在三一办公上搜索。
1、,探索勾股定理,(第2课时),2.如何验证勾股定理呢?,1.上节课我们已经通过探索得到了勾 股定理,请问勾股定理的内容是什么?,问题情境,据不完全统计,验证的方法有400多种,你想得到自己的方法吗?,小组活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形.,有不同的拼法吗?,合作探究,拼图展示,图 1,图 2,1.如图,你能表示大正方形的面积吗?能用两种方法表示吗?,2.与 有什么关系?为什么?,(1),(2),你能验证勾股定理了吗?,自主探究,图 1,a+b=c,验证方法一,图 1,你还能用图2进行验证吗?,方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行
2、整式运算,从理论上验证了勾股定理.,验证方法二,c,a,b a,a+b=c,图 2,追溯历史,用图2验证勾股定理的方法,据载最早是 三国时期数学家赵爽在为周髀算经作注时给出的,我国历史上将图2弦上的正方形称为弦图。,2002年的数学家大会(ICM-2002)在北京召开,这届大会会标 的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!,国内调查组报告,国际调查组报告,约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长
3、是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何线段都可公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发。据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海。不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”。第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决。我们将在下一章学习有关实数的知识。,勾股定理与第一次数学危机,1,1,?,在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一
4、位中年人正在散步,欣赏黄昏的美景他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形,趣闻调查组报告,“总统”证法,勾股定理的,于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。1876年4月1日,他在新英格兰教育日志上发表了他对勾股定理的这一证法。1881年,这位中年人伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易
5、懂、明了的证明,就把这一证法称为“总统”证法。,美国总统证法:,生活中勾股定理的应用,例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?,4Km,20秒后,5Km,A,B,C,拓展练习,1.如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M,O,Q三城市的沿江高速,已知沿江高速的建设成本是100万元/千米,该沿江高速的造价预计是多少?,生活中勾股定理的应用,M,P,N,O,Q,30Km,40Km,50Km,120Km,拓展练习,2.如图,一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?,生活中勾股定理的应用,A,B,O,C,D,拓展练习,生活中勾股定理的应用,3.如图,受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?,通过本节课的学习,你有何收获呢?,(2)上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评。,布置作业,(1)习题1.2 1,2,3题。,
链接地址:https://www.31ppt.com/p-4389554.html