小学数学的思想方法.ppt
《小学数学的思想方法.ppt》由会员分享,可在线阅读,更多相关《小学数学的思想方法.ppt(108页珍藏版)》请在三一办公上搜索。
1、小学数学的思想方法丹山镇中心校陈历权,数学思想和数学方法既有区别又有密切联系。数学思想既有认识论方面的内容,如数学的理论和知识;又有方法论方面的内容,如处理各种问题的意识和策略。数学方法主要是方法论方面的内容,如表示、处理各种问题的手段和途径。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想是数学的灵魂。那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。,课程标准修改稿一、总体目标通过义务教育阶段的数学学习,学生能:获得
2、适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。,一、符号化思想,1.符号化思想概念。数学符号是数学的语言,数学世界是一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用;因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和发展;国际通用的数学符号的使用,使数学成为国际化的语言。符号化思想是一般化的思想方法,具有普遍的意义。,2.如何理解符号化思想。第一,能从具体情境中抽象出数量关系和变化规律,并用符号表示。这是一个从具体到抽象、从特殊到一般的探索和归纳的过程。如在长方形上拼摆单位面积的
3、小正方形,探索并归纳出长方形的面积公式,并用符号表示:Sab。这是一个符号化的过程,同时也是一个模型化的过程。,第二,理解符号所代表的数量关系和变化规律。这是一个从一般到特殊、从理论到实践的过程。包括用关系式、表格和图象等表示情境中数量间的关系。如假设一个正方形的边长是a,那么4a就表示该正方形的周长,a表示该正方形的面积。这同样是一个符号化的过程,同时也是一个解释和应用模型的过程。第三,会进行符号间的转换。数量间的关系一旦确定,便可以用数学符号表示出来,但数学符号不是唯一的,可以丰富多彩。如一辆汽车的行驶时速为定值80千米,那么该辆汽车行驶的路程和时间成正比,它们之间的数量关系既可以用表格的
4、形式表示,也可以用公式s=80t表示,还可以用图象表示。即这些符号是可以相互转换的。,第四,能选择适当的程序和方法解决用符号所表示的问题。这是指完成符号化后的下一步工作,就是进行数学的运算和推理。能够进行正确的运算和推理是非常重要的数学基本功,也是非常重要的数学能力。,3.符号化思想的具体应用。(1)数的表示、运算和关系。数字09、+、是比较早期的数学符号,便于人们计数和计算。是小学数学应用最广泛的符号。()代数思想。代数在早期的主要特征是以文字为主的演算,到了16、17世纪数学家韦达、笛卡尔和莱布尼兹等数学家逐步引进和完善了代数的符号体系。,用字母表示数。用字母表示数量关系。运算定律、公式、
5、数量关系。加法交换律:a+b=b+a 时间、速度和路程的关系:s=vt用符号表示变化规律。数列的变化规律:1,2,3,5,8,图形的变化规律,小棒的根数:y=3x+1,4符号化思想的教学。符号化思想作为数学最基本的思想之一,数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的重要性。教师在日常教学中要给予足够的重视,并落实到课堂教学目标中。学生只有理解和掌握了数学符号的内涵和思想,才有可能利用它们进行正确的运算、推理和解决问题。,二、模型思想 1.模型思想的概念。数学模型是用数学语言概括地或近似地描述现实世界事物的特征、数量关系和空间形式的一种数学结构。从广义角度讲,
6、数学的概念、定理、规律、法则、公式、性质、数量关系式、图表、程序等都是数学模型。数学的模型思想是一般化的思想方法,数学模型的主要表现形式是数学符号表达式和图表,因而它与符号化思想有很多相通之处,同样具有普遍的意义。不过,也有很多数学家对数学模型的理解似乎更注重数学的应用性,即把数学模型描述为特定的事物系统的数学关系结构。如通过数学在经济、物理、农业、生物、社会学等领域的应用,所构造的各种数学模型。为了把数学模型与数学知识或是符号思想明显地区分开来,主要从侠义的角度讨论数学模型,即重点分析小学数学的应用及数学模型的构建。,2.模型思想的重要意义。数学模型是运用数学的语言和工具,对现实世界的一些信
7、息进行适当的简化,经过推理和运算,对相应的数据进行分析、预测、决策和控制,并且要经过实践的检验。如果检验的结果是正确的,便可以指导我们的实践。如上所述,数学模型在当今市场经济和信息化社会已经有比较广泛的应用;因而,模型思想在数学思想方法中有非常重要的地位。如果说符号化思想更注重数学抽象和符号表达,那么模型思想更注重数学的应用,即通过数学结构化解决问题,尤其是现实中的各种问题;当然,把现实情境数学结构化的过程也是一个抽象的过程。据了解,即将颁布的课程标准修改稿与现行的课程标准相比有了较大变化,在课程内容部分中明确提出了“初步形成模型思想”,并具体解释为“模型思想的建立是帮助学生体会和理解数学与外
8、部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识”。,3.模型思想的应用。数的表示,自然数列:0,1,2,用数轴表示数用数字和图形表示规律数的运算a+b=c,ca=b,cba,abc(a0,b0),ca=b,cba用字母表示运算定律,方程ax+b=c数量关系:时间、速度和路程:s=vt数量、单价和总价:a=np正比例关系:y/x=k反比例关系:xy=k用表格表示数量间的关系用图象表示数量间的
9、关系用字母表示周长、面积和体积公式用图表示空间和平面结构用统计图表描述和分析各种信息用分数表示可能性的大小。,4模型思想的教学。模型思想与符号化思想都是经过抽象后用符号和图表表达数量关系和空间形式,这是它们的共同之处;但是模型思想更加重视如何经过分析抽象建立模型,更加重视如何应用数学解决生活和科学研究中的各种问题。正是因为数学在各个领域的广泛应用,不但促进了科学和人类的进步,也使得人们对数学有了新的认识:数学不仅仅是数学家的乐园,它也不应是抽象和枯燥的代名词,它是全人类的朋友,也是广大中小学生的朋友。学生学习数学模型大概有两种情况:第一种是基本模型的学习,即学习教材中以例题为代表的新知识,这个
10、学习过程可能是一个探索的过程,也可能是一个接受学习的理解过程;第二种是利用基本模型去解决各种问题,即利用学习的基本知识解决教材中丰富多彩的习题以及各种课外问题。,数学建模是一个比较复杂和富有挑战性的过程,这个过程大致有以下几个步骤:(1)理解问题的实际背景,明确要解决什么问题,属于什么模型系统。(2)把复杂的情境经过分析和简化,确定必要的数据。(3)建立模型,可以是数量关系式,也可以是图表形式。(4)解答问题。下面结合案例做简要解析。第一,学习的过程可以经历类似于数学家建模的再创造过程。现实生活中已有的数学模型基本上是数学家和物理学家等科学家们把数学应用于各个科学领域经过艰辛的研究创造出来的,
11、使得我们能够享受现有的成果。如阿基米德发现了杠杆定律:平衡的杠杆,物体到杠杆支点的距离之比,等于两个物体重量的反比,即1:22:L1。在学习了反比例关系以后,可以利用简单的学具进行操作实验,探索杠杆定律。,第二,对于大多数人来说,在现实生活和工作中利用数学解决各种问题,基本上都是根据对现实情境的分析,利用已有的数学知识构建模型。这样的模型是已经存在并且是科学的,并不是新发明的,由学生进行再创造也几乎是不可行的;换句话说,有些模型由于难度较大或不便于探索,不必让学生再创造。如物体运动的路程、时间和速度的关系为s=vt,利用这个基本模型可以解决各种有关匀速运动的简单的实际问题。但是由于这个模型比较
12、抽象,操作难度较大,因而也不适合学生进行再创造。教师只需要通过现实模拟或者动画模拟,使学生能够理解模型的意义便可。,第三,应用已有的数学知识分析数量关系和空间形式,经过抽象建立模型,进而解决各种问题。学生学习了教材上的基础知识以后,利用已有知识解决新的更加复杂的各种问题,是一个富有挑战的过程,也可以是一个合作探究的过程。,案例1:小明的家距离学校600米,每天上学从家步行10分钟到学校。今天早晨出门2分钟后发现忘记带学具了,立即回家去取。他如果想按原来的时间赶到学校,他从回家再到学校,步行的速度应是多少?(取东西的时间忽略不计)分析:(1)本题是日常生活中常见的行程问题,问题是要求小明步行的速
13、度,是关于时间、速度和路程的问题。(2)这里需要明确所求的速度相对应的路程和时间是什么,因为取东西等时间忽略不计,因此剩余的时间就可以确定为步行的时间;路程是从家出来2分钟后开始算,再回家的路程加上从家到学校的路程的和;时间是10分钟减去2分钟,只有8分钟的时间了。(3)根据基本的关系式s=vt,可先求出s600+(60010)2720(米),t1028(分钟)。列式为:7208v。(4)v90,即小明步行的速度为90米分钟。从上面的解答过程来看,难点在于第二步中知道模型系统后相应的数量怎么准确地找出来,一定要注意题中对每一个量是怎样叙述的,有什么特殊的要求,在认真读题的基础上准确地找出来或计
14、算出来。,案例1:探索规律上海版五下P61表面积的变化,三、化归思想1.化归思想的概念。人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的
15、意义和作用。,2.化归所遵循的原则。化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。因此,应用化归思想时要遵循以下几个基本原则:(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。(3)简单化原则,即把复杂的问题转化为简单的问题。(4)直观化原则,即把抽象的问题转化为具体的问题。,3解决问题中的化归策略。(1)化抽象问题为直观问题。从数的认识到计算,直观操作帮助理解算理算法;解决问题中
16、画线段图表等帮助理解数量关系,进行推理;用图表进行推理;函数图像直观地表示变量间的关系;统计图表直观地表示数据。,案例:分析:此问题通过观察,可以发现一个规律:每一项都是它前一项的。但是对于小学和初中的学生来说,还没有学习等比数列求和公式。如果把一条线段看作1,先取它的一半表示,再取余下的一半的一半表示,这样不断地取下去,最终相当于取了整条线段。因此,上式的结果等于1。,(2)化繁为简的策略。有些数学问题比较复杂,直接解答过程会比较繁琐,如果在结构和数量关系相似的情况下,从更加简单的问题入手,找到解决问题的方法或建立模型,并进行适当检验,如果能够证明这种方法或模型是正确的,那么该问题一般来说便
17、得到解决。案例:快速口算8585,9595,105105 分析:仔细观察可以看出,此类题有些特点,每个算式中的两个因数相等,并且个位数都是5。不妨从简单的数开始探索,如1515225,2525625,35351225。通过这几个算式的因数与相应的积的特点,可以初步发现规律是:个位数是5的相等的两个数的乘积分为左右两部分:左边为因数中5以外的数字乘比它大1的数,右边为25(5乘5的积)。所以85857225,95959025,10510511025,实际验证也是如此。,(3)化实际问题为特殊的数学问题。数学来源于生活,应用于生活。与小学数学有关的生活中的实际问题,多数可以用常规的小学数学知识解决
18、;但有些生活中的实际问题表面上看是一些常用的数量,似乎能用常规的数学模型解决问题。但真正深入分析数量关系时,可能由于条件不全面而无法建立模型。这时,就需要超越常规思维模式,从另外的角度进行分析,找到解决问题的方法。,案例:李阿姨买了2千克苹果和3千克香蕉用了11元,王阿姨买了同样价格的1千克苹果和2千克香蕉,用了6.5元。每千克苹果和香蕉各多少钱?分析:此题初看是关于单价、总价和数量的问题,但是,由于题中没有告诉苹果和香蕉各自的总价是多少,无法直接计算各自的单价。认真观察,可以发现:题中分两次给出了不同数量的苹果和香蕉的总价,虽然题中有苹果和香蕉各自的单价这两个未知数,但这二者没有直接的关系,
19、如果用方程解决,也超出了一元一次方程的范围。那么这样的问题在小学的知识范围内如何解决呢?利用二元一次方程组加减消元的思想,可以解决这类问题。不必列式推导,直接分析便可:1千克苹果和2千克香蕉6.5元,那么可得出2千克苹果和4千克香蕉13元;题中已知2千克苹果和3千克香蕉11元。用13减去11得2,所以香蕉的单价是每千克2元。再通过计算得苹果的单价是每千克2.5元。,(4)化未知问题为已知问题。对于学生而言,学习的过程是一个不断面对新知识的过程,有些新知识通过某些载体直接呈现,如面积和面积单位,通过一些物体或图形直接引入概念;而有些新知识可以利用已有知识通过探索,把新知识转化为旧知识进行学习。如
20、平行四边形面积公式的学习,通过割补平移,把平行四边形转化为长方形求面积。这种化未知为已知的策略,在数学学习中非常常见。百分数问题转化为分数问题举例。,案例:六上P69例题3:某小区的房价(平均价)原来是每平方米4200元,现上涨了。(1)现在的售价为每平方米多少元?(2)买房还需交纳总房价的的契税。一套120平方米的房屋,按现在的售价购买应付多少元?解答:(1)4200(1+1/100)=4242(元)(2)1204242(1+3/200)=516675.6(元)案例2:P91练习:一商场2006年的全年销售额为210万元,比2005增长了5.6,该商场计划2007年的全年销售额的增长率比上年
21、提高一个百分点,求这个商场2007年计划的全年销售额。解答:5.6%=6.6%210(1+6.6%)=223.86(万元),案例3:2006年广州市中考题。目前广州市小学和初中在校生共有约万人,其中小学生在校人数比初中生在校人数的倍多万人。()求目前广州市在校小学生人数和初中生人数。()假设今年小学生每人需交杂费元,初中生每人需交杂费元,而这些费用全部由广州市政府拨款解决,则广州市要为此拨款多少?案例4:上海版五下P21例:小胖和小巧一共有232张邮票,小胖的邮票张数是小巧3倍,小胖、小巧各有多少张邮票?,分析:上题与人教版小学五上例相比,稍复杂。,四、推理思想 1.推理思想的概念。推理是从一
22、个或几个已有的判断得出另一个新判断的思维形式。推理所根据的判断叫前提,根据前提所得到的判断叫结论。推理分为两种形式:演绎推理和合情推理。演绎推理是根据一般性的真命题(或逻辑规则)推出特殊性命题的推理。演绎推理的特征是:当前提为真时,结论必然为真。演绎推理的常用形式有:三段论、选言推理、假言推理、关系推理等。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。合情推理的常用形式有:归纳推理和类比推理。当前提为真时,合情推理所得的结论可能为真也可能为假。,(1)演绎推理。三段论,有两个前提和一个结论的演绎推理,叫做三段论。三段论是演绎推理的一般模式,包括:大前提已知的一般原理
23、,小前提所研究的特殊情况,结论根据一般原理,对特殊情况做出的判断。例如:一切奇数都不能被整除,()是奇数,所以()不能被整除。选言推理,分为相容选言推理和不相容选言推理。这里只介绍不相容选言推理:大前提是个不相容的选言判断,小前提肯定其中的一个选言支,结论则否定其它选言支;小前提否定除其中一个以外的选言支,结论则肯定剩下的那个选言支。例如:一个三角形,要么是锐角三角形,要么是直角三角形,要么是钝角三角形。这个三角形不是锐角三角形和直角三角形,所以,它是个钝角三角形。,假言推理,假言推理的分类较为复杂,这里简单介绍一种充分条件假言推理:前提有一个充分条件假言判断,肯定前件就要肯定后件,否定后件就
24、要否定前件。例如:如果一个数的末位是,那么这个数能被整除;这个数的末位是,所以这个数能被整除。这里的大前提是一个假言判断,所以这种推理尽管与三段论有相似的地方,但它不是三段论。关系推理,是前提中至少有一个是关系命题的推理。下面简单举例说明几种常用的关系推理:(1)对称性关系推理,如米厘米,所以厘米米;(2)反对称性关系推理,a大于b,所以b不大于a;(3)传递性关系推理,ab,bc,所以ac。关系推理在数学学习中应用比较普遍,如在一年级学习数的大小比较时,把一些数按从小到大或从大到小的顺序排列,实际上都用到了关系推理。,(2)合情推理。归纳推理,是从特殊到一般的推理方法,即依据一类事物中部分对
25、象的相同性质推出该类事物都具有这种性质的一般性结论的推理方法。分为完全归纳法和不完全归纳法。完全归纳法是根据某类事物中的每个事物或每个子类事物都具有某种性质,而推出该类事物具有这种性质的一般性结论的推理方法。完全归纳法考察了所有特殊对象,所得出的结论是可靠的。不完全归纳法是通过观察某类事物中部分对象发现某些相同的性质,推出该类事物具有这种性质的一般性结论的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。类比推理,是从特殊到特殊的推理方法,即依据两类事物的相似性,用一类事物的性质去推测另一类事物也具有该性质的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 思想 方法
链接地址:https://www.31ppt.com/p-4379304.html