实际问题与一元一次方程(1).ppt
《实际问题与一元一次方程(1).ppt》由会员分享,可在线阅读,更多相关《实际问题与一元一次方程(1).ppt(28页珍藏版)》请在三一办公上搜索。
1、3.4 实际问题与一元一次方程第1课时,1.理解配套问题、工程问题的背景.2.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.(重点)3.掌握用一元一次方程解决实际问题的基本过程.(重点),1.配套问题:某车间工人生产螺钉和螺母,一个螺钉要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺钉数量的_倍.,2,2.工程问题:(1)工作时间、工作效率、工作量之间的关系:工作量=_.工作时间=_.工作效率=_.(2)通常设完成全部工作的总工作量为_,如果一项工作分几个阶段完成,那么各阶段工作量的和=_,这是工程问题列方程的依据.,工作时间,工作效率,工作量,工作效率,工作量,工
2、作时间,1,总工作量,(3)一项工作,甲用a小时完成,若总工作量可看成1,则甲的工作效率是.若这项工作乙用b小时完成,则乙的工作效率是.(4)人均工作效率:人均工作效率表示平均每人单位时间完成的工作量.例如,一项工作由m个人用n小时完成,那么人均工作效率为.a个人b小时完成的工作量=人均工作效率_.,a,b,(打“”或“”)(1)用纸板折无盖的纸盒,则一个盒身与两个盒底配套.()(2)一件工作,某人5小时单独完成,其工作效率为()(3)一项工程,甲单独做4小时能完成,乙单独做3小时能完成,则两人合作1小时完成全部工作的(),知识点 1 用一元一次方程解决配套问题【例1】用白铁皮做罐头盒,每张铁
3、皮可制盒身25个或制盒底40个,1个盒身与2个盒底配成1个罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?【解题探究】1.设x张铁皮制盒身,则_张铁皮制盒底.2.用x怎样表示所制盒身、盒底的个数?提示:由题意可知制盒身25x个,盒底40(36-x)个.,36-x,3.制成的盒身与盒底有什么数量关系?提示:盒身个数的2倍=盒底的个数.4.所以可列方程:_.5.解方程,得:_.6.用_张制盒身,_张制盒底.,225x=40(36-x),x=16,16,20,【总结提升】配套问题的两个未知量及两个等量关系1.两个未知量:这类问题有两个未知数,设其中哪个为x都可以,另一
4、个用含x的代数式表示,两种设法所列方程没有繁简或难易的区别.2.两个等量关系:例如本题,一个是“制盒身的铁皮张数+制盒底的铁皮张数=36”,此关系用来设未知数.另一个是制成的盒身数与盒底数的倍数关系,这是用来列方程的等量关系.,知识点 2 用一元一次方程解决工程问题【例2】一本稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?,【思路点拨】先求出甲一天的工作效率 甲、乙合作一天的工作效率 及甲乙合打7天的工作量,再求出乙一天的工作效率,设乙还需x天完成,用含x的代数式表示乙x天的工作量,根据“两人合打7天的工作量+乙x天
5、的工作量=1”,列出方程,求解并作答.,【自主解答】设乙还需x天完成,根据题意,得解这个方程,得x=12.5.答:乙还需12.5天完成.,【总结提升】解决工程问题的思路1.三个基本量:工程问题中的三个基本量:工作量、工作效率、工作时间,它们之间的关系是:工作量=工作效率工作时间.若把工作量看作1,则工作效率=2.相等关系:(1)按工作时间,各时间段的工作量之和=完成的工作量.(2)按工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的工作量=完成的工作量.,题组一:用一元一次方程解决配套问题1.某土建工程共需动用15台挖运机械,每台机械每小时能挖土3 m3或者运土2 m3,为了使挖土和运土工
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际问题 一元一次方程
链接地址:https://www.31ppt.com/p-4378407.html