第十五章++整式的乘除与因式分解1.doc
《第十五章++整式的乘除与因式分解1.doc》由会员分享,可在线阅读,更多相关《第十五章++整式的乘除与因式分解1.doc(75页珍藏版)》请在三一办公上搜索。
1、第十五章 整式的乘除与因式分解15.1.1同底数幂的乘法喀拉布拉乡中学:权成龙、孙美荣课型:新授 教学目标 1知识与技能 在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用 2过程与方法 经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力 3情感、态度与价值观 在小组合作交流中,培养协作精神、探究精神,增强学习信心 重、难点与关键 1重点:同底数幂乘法运算性质的推导和应用 2难点:同底数幂的乘法的法则的应用预习导航:幂的运算中的同底数幂的乘法教学,要突破这个难点,必须引导学生,循序渐进,合作交流,获得各种运算的感性认识,进而上各项到理性上来,提醒
2、学生注意a2与(a)2的区别 教学方法 采用“情境导入探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则 教学过程 一、创设情境,故事引入 【情境导入】 “盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流 【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到
3、地球的距离是多少? 光的速度为3105千米/秒,太阳光照射到地球大约需要5102秒,你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:31055102=15105102=15?(引入课题) 【教师提问】到底105102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论 【学生活动】分四人小组讨论、交流,举手发言,上台演示 计算过程:105102=(1010101010)(1010) =10101010101010 =107 【教师活动】下面引例 1请同学们计算并探索规律 (1)2324=(222)(2222)=2( ); (2)5354=_=5( );
4、(3)(3)7(3)6=_=(3)( ); (4)()3()=_=()( ); (5)a3a4=_a( ) 提出问题:这几道题目有什么共同特点? 请同学们看一看自己的计算结果,想一想,这些结果有什么规律? 【学生活动】独立完成,并在黑板上演算 【教师拓展】计算aa=?请同学们想一想 【学生总结】aa=am+n 这样就探究出了同底数幂的乘法法则 二、范例学习,应用所学【例】计算: (1)103104; (2)aa3; (3)aa3a5; (4)xx2+x2x 【思路点拨】(1)计算结果可以用幂的形式表示如(1)103104=103+4=107,但是如果计算较简单时也可以计算出得数(2)注意a是a
5、的一次方,提醒学生不要漏掉这个指数1,x3+x3得2x3,提醒学生应该用合并同类项(3)上述例题的探究,目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则 【教师活动】投影显示例题,指导学生学习 【学生活动】参与教师讲例,应用所学知识解决问题 三、随堂练习,巩固深化 课本第142页练习题 【探研时空】 据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.341019个水分子,那么,每个人每年要用去多少个水分子? 四、课堂总结,发展潜能 1同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,使用方法:乘积中,幂的底数不变,指数相加注意两点:
6、一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即aman=am+n(m、n是正整数)2应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式练习(1)(ab)3(ab)4 3运用幂的乘法运算性质注意不能与整式的加减混淆 五、布置作业,专题突破 1课本P148习题151第1(1),(2),2(1)题 2选用目标小练习 六、板书设计1511 同底数幂的乘法同底数幂的乘法法则: 【例】:计算(由学生板演) 三、练习同底数幂相乘,底数不变,指数相加 1)103104; (2)aa3; .即a
7、man=am+n(m、n都是正整数) 3)aa3a5; (4)xx2+x2x 七、教学反思15.1.2 幂的乘方 喀拉布拉乡中学:权成龙、孙美荣课型:新授 教学目标 1知识与技能 理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质 2过程与方法 经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力 3情感、态度与价值观 培养学生合作交流意义和探索精神,让学生体会数学的应用价值 重、难点与关键 1重点:幂的乘方法则 2难点:幂的乘方法则的推导过程及灵活应用 预习导航:在引导这个推导过程时,步步深入,层层引导,
8、要求对性质深入地理解 教学方法 采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则 教学过程 一、创设情境,导入新知【情境导入】 大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=r3) 【学生活动】进行计算,并在黑板上演算解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=(102)3=?(引入课题) 【教师引导】(102)3=?利用幂的意义来推导 【学生活动】有些同学这时无从下手 【教师启发】
9、请同学们思考一下a3代表什么?(102)3呢? 【学生回答】a3=aaa,指3个a相乘(102)3=102102102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102102102=102+2+2=106,因此(102)3=106 【教师活动】下面有问题: 利用刚才的推导方法推导下面几个题目: (1)(a2)3;(2)(24)3;(3)(bn)3;(4)(x2)2 【学生活动】推导上面的问题,个别同学上讲台演示 【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少? 【学生活动】归纳总结并进行小组讨论,最后得出结论: (am)n= amn 评析:通
10、过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘 二、范例学习,应用所学 【例】计算: (1)(103)5;(2)(b3)4;(3)(xn)3;(4)(x7)7 【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算 【教师活动】启发学生共同完成例题 【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则: 解:(1)(103)5=1035=1015; (3)(xn)3=xn3=x3n; (2)(b3)4=b34=b12; (4)(x7)7=x77=x49 三、随堂练习,巩固练习 课本
11、P143练习 提高练习:计算 5(P3)4(P2)3+2(P)24(P5)2 (1)m2n+1m-1+02002(1)1990若(x2)m=x8,则m=_若(x3)m2=x12,则m=_若xmx2m=2,求x9m的值。若a2n=3,求(a3n)4的值。已知am=2,an=3,求a2m+3n的值. 【教师活动】巡视、关注中等、中下的学生。 【学生活动】书面练习、板演 四、课堂总结,发展潜能 1幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方方法:底数不变,指数相乘 2知识拓展:这里的底数、指数可以是数,可以是字母,也可以是单项式或多项式 3幂的乘方法则与同底数幂的乘法法则区别在于
12、,一个是“指数相乘”,一个是“指数相加”五、布置作业: 1. 课本P148习题151第1、2题 2.选用目标小练习 3.附加练习 -(x+y)34 (an+1)2(a2n+1)3 (-32)3 a3a4a+(a2)4+2(a4)2 (xm+n)2(-xm-n)3+x2m-n(-x3)m 计算:x2x2(x2)3+x10六、板书设计 15.1.2 幂的乘方1、 幂的乘方的乘法法则 例:计算 练习:幂的乘方,底数不变,指数相乘 (1)(103)5 (2)(b3)4;(3)(xn)3 (4)(x7)即(am)n=amn(m,n都是正整数) 七、教学反思: 15.1.3 积的乘方喀拉布拉乡中学:权成龙
13、、孙美荣课型:新授 教学目标 1知识与技能 通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质 2过程与方法 经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力 3情感、态度与价值观 通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心 重、难点与关键 1重点:积的乘方的运算 2难点:积的乘方的推导过程的理解和灵活运用 3关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入,层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地
14、应用 教学方法 采用“探究交流合作”的方法,让学生在互动中掌握知识 教学过程(一) 回顾旧知识1 同底数幂的乘法 2 幂的乘方(二) 创设情境,引入新课1 问题:已知一个正方体的棱长为2103cm,你能计算出它的体积是多少吗?2 学生分析(略)3 提问:体积应是V=(2103)3cm3 ,结果是幂的乘方形式吗?底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,请同学们自己探索,发现其中的奥秒(三) 自主探究,引出结论1填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律? (1)(ab)2=(ab)(ab
15、)=(aa)(bb)=a( )b( ) (2)(ab)3=_=_=a( )b( )(3)(ab)n=_=_=a( )b( )(n是正整数)2分析过程:(1)(ab)2 =(ab)(ab)= (aa)(bb)= a2b2, 【1】(2)(ab)3=(ab)(ab)(ab)=(aaa)(bbb)=a3b3;(3)(ab)n=anbn3得到结论:积的乘方:(ab)n=anbn(n是正整数)把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积4积的乘方法则可以进行逆运算即: anbn=(ab)n(n为正整数)【2】anbn=幂的意义 =乘法交换律、结合律 (ab)n 乘方的意义 三
16、、随堂练习,巩固深化 课本P144练习 【探研时空】 计算下列各式: (1)()2()3; (2)(ab)3(ab)4; (3)(a5)5; (4)(2xy)4; (5)(3a2)n; (6)(xy3n)2(2x)2 3; (7)(x4)6(x3)8; (8)p(p)4; (9)(tm)2t; (10)(a2)3(a3)2 四、课堂总结,发展潜能 本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半” 1积的乘方(ab)n=anbn(n是正整数),使用范围:底数是积的乘方方法:把积的每一个因式分别乘方,再把所得的幂相乘 2在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,也可以是整式
17、,对三个以上因式的积也适用 3要注意运算过程,注意每一步依据,还应防止符号上的错误 4在建构新的法则时应注意前面学过的法则与新法则的区别和联系 五、布置作业,专题突破 1课本P148习题151第1、2题 2.选用目标小练习 3.选做题2(x3)2x3-(3x3)3+(5x)2x7 (3xy2)2+(-4xy3) (-xy) (-2x3)3(x2)2 (-x2y)3+7(x2)2(-x)2(-y)3 (m-n)3p(m-n)(m-n)p5(0.125)788 (0.25)8410 2m4m()m 已知10m=5,10n=6,求102m+3n的值六、板书设计 15.1.3 积的乘方积的乘方的乘法法
18、则 例: 练习: 34 积的乘方 把积的每一个因式 (1)(ab)2 3分别乘方,再把所得的幂相乘 (2)(ab) 4 即(ab)n=anbn(n是正整数) (3)(ab)n . 七、教学反思:15.1.4 单项式乘以单项式 喀拉布拉乡中学:权成龙、孙美荣课型:新授 教学目标 1知识与技能 理解整式运算的算理,会进行简单的整式乘法运算 2过程与方法 经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力 3情感、态度与价值观 培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神 重、难点与关键 1重点:单项式乘法运算法则的推导与应用 2难点:单
19、项式乘法运算法则的推导与应用 3关键:通过创设一定的问题情境,推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点 教学方法 采用“情境探究”的教学方法,让学生在创设的情境之中自然地领悟知识 教学过程 (一)知识回顾:回忆幂的运算性质:aman=am+n (am)n=amn (ab)n=anbn (m,n都是正整数)(二)创设情境,引入新课【1】问题:光的速度约为3105千米/秒,太阳光照射到地球上需要的时间大约是5102秒,你知道地球与太阳的距离约是多少千米吗?【2】学生分析解决:(3105)(5102)=(35)(105102)=15107【3】问题的推广:如果将上式中的数字
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十五 整式 乘除 因式分解
链接地址:https://www.31ppt.com/p-4377431.html