第13章实数.doc
《第13章实数.doc》由会员分享,可在线阅读,更多相关《第13章实数.doc(44页珍藏版)》请在三一办公上搜索。
1、13.1平方根(34课时)学习目标:1、 理解数的算术平方根的概念,并会用符号表示。2、 理解平方与开平方是互为逆运算。3、 会求一些非负数的算术平方根。自学指导: 认真学习课本6871页的内容,完成下列要求: 1、中被开方数a的范围怎样。0的算术平方根的意义。 2、完成例1,注意例1的书写格式。 3、学习例3的内容,注意与7是怎样比较的。 4、自学后完成展示内容,20分钟后进行展示。展示内容: 1、 = 4的算术平方根是 即 = 的算术平方根是 即 2、正数a的算术平方根是,2的算术平方根是 4的算术平方根是2, = 3、求下列各数的算术平方根: 0.0025 121 7 4、求下列各式的值
2、:(1) (2) (3) 5、计算下列各式:(1) (2) + (3) 6、求下列各等式中的正数x(1)= 169 (2) 4 121 = 07、比较下列各组数的大小。(1)与12 (2)与0.513.3 平方根(35课时)一、 学习目标1、 理解平方根的概念2、 了解开平方的定义3、 掌握平方根的性质二、 自学指导认真阅读7274页内容,完成下列要求:1、 说明:一个正数a的算术平方根有个,平方根有个,并且互为,0的平方根是。2、 负数有没有平方根,为什么?3、 注意根号前的符号4、 自学20分钟后,进行展示活动三、 展示内容1、 填表:X881210.3602、 计算下列各式的值:(1)(
3、2)(3)(4)3、 平方根起源于正方形的面积,若一个正方形的面积为A,那么这个正方形的边长为多少?4、 判断下列说法是否正确(1)5是25的算术平方根()(2)是的一个平方根()(3)的平方根是4()(4)0的平方根与算术平方根都是0()5、下列各式是否有意义,为什么?(1) (2)(3)(4)6、求下列各式的x的值:(1)25(2)810(3)2536(4)218013.2 立方根(36课时)学习目标:1、理解并掌握立方根的概念,会用符号表示一个数的立方根。2、会求一个数的立方根。自学指导: 自学课本7778页内容,完成下列要求:1、理解立方根的概念,理解立方与开立方是互为逆运算。2、独立
4、完成77页探究内容,组内合作交流,归纳出正数、负数、0的立方根的特点。3、理解与的相等关系。4、自学后完成展示内容,20分钟后进行展示。展示内容:1、如果一个数的立方根等于 ,那么这个数叫做 的 或 。2、求一个数的 的运算,叫做 。 与 互为逆运算。3、正数的立方根是 数,负数的立方根是 数,0的立方根是 。4、符号中,3是 ,中的 不能省略。5、 6、课本79页练习1、3、4题.7、求下列各数的立方根:(1)8 (2) (3) 125 (4) 8198、求下列各式的值。(1) (2) (3) (4) (5)13.3实数(37课时)学习目标:1、了解实数的意义,能对实数按要求进行分类。2、了
5、解实数范围内,相反数、倒数、绝对值的意义。3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。学习重点:理解实数的概念。学习难点:正确理解实数的概念。一、 学前准备 有理数 有理数 二、探究新知1、归纳: 任何一个有理数都可以写成_小数或_小数的形式。反过来,任何_小数或_小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的_根和_根都是_小数, _小数又叫无理数,也是无理数结论: _和_统称为实数你能举出一些无理数吗?2、试一试 把实数分类 像有理数一样,无理数也有正负之分。例如,是_无理数,是_无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类: 实数3
6、、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?从图中可以看出OO的长时这个圆的周长_,点O的坐标是_这样,无理数可以用数轴上的点表示出来(2)总结 事实上,每一个无理数都可以用数轴上的_表示出来,这就是说,数轴上的点有些表示_,有些表示_当从有理数扩充到实数以后,实数与数轴上的点就是_的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的_都是表示一个实数 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数_4、讨
7、论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数的相反数是_,这里表示任意_。一个正实数的绝对值是_;一个负实数的绝对值是它的_;0的绝对值是_三、 学以致用例1、把下列各数分别填入相应的集合里: 正有理数 负有理数 正无理数 负无理数 2、下列实数中是无理数的为( )A. 0 B. C. D. 3、 的相反数是 ,绝对值 4、绝对值等于 的数是 , 的平方是 5、6、求绝对值练习:一、判断下列说法是否正确:1.实数不是有理数就是无理数。 ( )2.无限小数都是无理数。 ( )3.无理数都是无限小数。 ( )4.带根号的数都是无理数。 ( ) 5.两个无
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13 实数
链接地址:https://www.31ppt.com/p-4358709.html