大工20秋《数据挖掘》大作业题目及要求.docx
《大工20秋《数据挖掘》大作业题目及要求.docx》由会员分享,可在线阅读,更多相关《大工20秋《数据挖掘》大作业题目及要求.docx(5页珍藏版)》请在三一办公上搜索。
1、大国理2大学网络教育学院数据挖掘课程大作业题目:Krm算法原理以及PythOn实现第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对PythoIl与数据挖掘的认识等等,300500字。数据挖掘是计算机专业一门重要的专业课。本课程是大数据背景下现代统计数据分析不可缺少的重要工具。通过本课程的学习,培养学生的数据分析技能,熟悉和掌握大数据信息提取与结果分析,培养适应社会数据分析岗位需求的专业人才。课程的重点教学内容为:网络爬虫与数据抽取、数据分析与挖掘算法关联规则、数据分析与挖掘算法分类与预测、数据分析与挖掘算法一聚类等。课程任务主要是让学生
2、在学习期间掌握数据挖掘理论以及如何用数据挖掘来解决实际问题,了解某个数据挖掘解决方案对特定问题是否切实可行,学生能够借助软件工具进行具体数据的挖掘分析。本课程为计算机相关专业的基础课程,其内容涵盖了数据挖掘的相关知识。课程在阐述Python理论知识基础上,增加了数据分析和处理等知识内容,从而使学生加深对数据挖掘的理解。课程安排内容难易适中,学生可以通过实际项目加深对数据挖掘系统结构的整体流程了解。第二大题:完成下面一项大作业题目。2020秋数据挖掘课程大作业注意:从以下5个题目中任选其一作答。题目一:Knn算法原理以及Python实现要求:文档用使用WOrd撰写即可。主要内容必须包括:(1)算
3、法介绍。(2)算法流程。(3) PythOn实现算法以及预测。(4)整个Word文件名为姓名奥鹏卡号学习中心(如戴卫东101410013979浙江台州奥鹏学习中心1VlP)答:一、knn算法介绍L介绍邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的
4、类别来决定待分样本所属的类别。kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。2 .核心概括主要的思想是计算待分类样本与训练样本之间的差异性,并将差异按照由小到大排序,选出前面K个差异最小的类别,并统计在K个中类别出现次数最多的类别为最相似的类,最终将待分类样本分到最相似的训练样本的类中。与投票(Vote)的机制类似。二、kirn算法流程L准备数据,对数据进行预处理3 .选用合适的数据结构存储训练数据和测试元组4 .设定参数,如k5 .
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据挖掘 大工 20 数据 挖掘 作业 题目 要求
链接地址:https://www.31ppt.com/p-4332824.html