中考经典相似三角形练习题.docx
《中考经典相似三角形练习题.docx》由会员分享,可在线阅读,更多相关《中考经典相似三角形练习题.docx(65页珍藏版)》请在三一办公上搜索。
1、经典练习题相似三角形(附答案)一.解答题(共3小题)1.如图,在AC中,DEC,EFAB,求证:DFC2如图,梯形ABCD中,BC,点F在BC上,连与的延长线交于点G.()求证:CDFBF;(2)当点是的中点时,过F作EFD交A于点E,若AB=6cm,EF=4cm,求C的长3如图,点D,E在BC上,且FD,FEAC.求证:BCFE4.如图,已知E是矩形BC的边CD上一点,BAE于,试说明:ABFEAD.5.已知:如图所示,在ABC和AD中,AB=C,AD=AE,AC=DE,且点,D在一条直线上,连接B,CD,M,N分别为B,CD的中点()求证:BED;AMN是等腰三角形;(2)在图的基础上,将
2、ADE绕点A按顺时针方向旋转180,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立;(3)在()的条件下,请你在图中延长E交线段BC于点P求证:PBMN.6.如图,是ABCD的边BA延长线上一点,连接EC,交D于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4的正方形方格中,AB和DF的顶点都在边长为的小正方形的顶点上(1)填空:ABC= _ ,B= _ ;(2)判断AB与DEC是否相似,并证明你的结论.8如图,已知矩形ABCD的边长AB=3m,=6cm某一时刻,动点M从A点出发沿方向以1cm/的速度向B点匀速运动
3、;同时,动点从D点出发沿方向以2cm/的速度向点匀速运动,问:(1)经过多少时间,MN的面积等于矩形CD面积的?(2)是否存在时刻t,使以,M,N为顶点的三角形与ACD相似?若存在,求t的值;若不存在,请说明理由9如图,在梯形BC中,若ABD,AD=BC,对角线B、AC把梯形分成了四个小三角形()列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)()请你任选一组相似三角形,并给出证明1.如图AC中,D为A上一点,CD2DA,BAC=45,BC60,EBD于E,连接AE(1)写出图中所有相等的线段,并加以证明;(2)
4、图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求BEC与BEA的面积之比.11如图,在ABC中,AB=AC,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交C于P,交于Q(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);()M位于C的什么位置时,四边形AQMP为菱形并证明你的结论12.已知:P是正方形ABCD的边上的点,且BP3PC,M是CD的中点,试说明:ADMP13.如图,已知梯形ABC中,ADB,D=2,AB=C=8,D=1.(1)求梯形ABCD的面积S;(2)动点从点B出发,以1/s的速度,沿ADC方向,向点C运动;动点从点C出发,以
5、m/s的速度,沿CDA方向,向点A运动,过点Q作EBC于点E若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为秒.问:当点P在BA上运动时,是否存在这样的t,使得直线PQ将梯形D的周长平分?若存在,请求出t的值;若不存在,请说明理由;在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.1.已知矩形ABC,长BC=12cm,宽AB,P、分别是
6、AB、B上运动的两点若自点A出发,以1cm的速度沿A方向运动,同时,Q自点出发以cm/的速度沿BC方向运动,问经过几秒,以P、为顶点的三角形与BDC相似?1.如图,在BC中,B=0cm,BC=20cm,点P从点开始沿AB边向B点以2cms的速度移动,点Q从点B开始沿边向点C以4c/的速度移动,如果P、Q分别从A、同时出发,问经过几秒钟,P与ABC相似16如图,A=AD=90,AC=,AD=问当AB的长为多少时,这两个直角三角形相似.1已知,如图,在边长为a的正方形ABCD中,M是D的中点,能否在边AB上找一点N(不含A、B),使得DM与MA相似?若能,请给出证明,若不能,请说明理由.18如图在
7、C中,C0,BC=8cm,C=m,点Q从B出发,沿C方向以2cm/s的速度移动,点P从C出发,沿C方向以1cms的速度移动若Q、P分别同时从B、出发,试探究经过多少秒后,以点C、P、为顶点的三角形与CBA相似?19.如图所示,梯形ACD中,ADC,A=0,AB7,A=2,B3,试在腰B上确定点的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似20.A和DE是两个等腰直角三角形,A0,DEF的顶点E位于边B的中点上(1)如图1,设DE与A交于点M,E与A交于点N,求证:EMCNE;()如图2,将DF绕点旋转,使得D与的延长线交于点M,F与A交于点N,于是,除(1)中的一对相似
8、三角形外,能否再找出一对相似三角形并证明你的结论.1如图,在矩形BCD中,AB=15cm,B=10c,点P沿A边从点开始向B以cms的速度移动;点Q沿DA边从点D开始向点A以1cm/的速度移动.如果P、同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、为顶点的三角形与AC相似22如图,路灯(点)距地面8米,身高16米的小明从距路灯的底部(O点)2米的A点,沿O所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?3阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面
9、镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案(1)所需的测量工具是: _;()请在下图中画出测量示意图;()设树高A的长度为x,请用所测数据(用小写字母表示)求出x2问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量下面是他们通过测量得到的一些信息:甲组:如图,测得一根直立于平地,长为80cm的竹竿的影长为60cm乙组:如图2,测得学校旗杆的影长为900m.丙组:如图,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为20cm,影长为15m任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图,设太阳光
10、线NH与相切于点.请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式62=2602)25.阳光通过窗口照射到室内,在地面上留下27m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离C=8.7m,窗口高=1.8m,求窗口底边离地面的高.26.如图,李华晚上在路灯下散步已知李华的身高A=,灯柱的高O=OP=l,两灯柱之间的距离OO=m.(1)若李华距灯柱OP的水平距离OAa,求他影子C的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DAC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以1匀速行走,试
11、求他影子的顶端在地面上移动的速度v227.如图,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用,S2,S3表示,则不难证明1=S3.(1)如图,分别以直角三角形AB三边为边向外作三个正方形,其面积分别用S,2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)()如图,分别以直角三角形BC三边为边向外作三个正三角形,其面积分别用1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;()若分别以直角三角形AC三边为边向外作三个一般三角形,其面积分别用S1,S2,3表示,为使1,,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(
12、1),(2),()的结论,请你总结出一个更具一般意义的结论.2.已知:如图,ABCADE,AB=1,=9,D.求E29.已知:如图RtABRtDC,若AB=,AC4()求BD、D的长;()过B作BEDC于,求E的长30(1)已知,且x+4z2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为60,求它们的周长参考答案与试题解析一.解答题(共3小题)1.如图,在ABC中,DEBC,EFA,求证:ADEEFC考点:相似三角形的判定;平行线的性质。菁优网版权所有专题:证明题。分析:根据平行线的性质可知EDC,A=EC,根据相似三角形的判定定理可知ADE
13、C.解答:证明:DEBC,DEFC,ED=C又EA,EFA,A=FEADEC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2如图,梯形ABC中,BC,点在BC上,连DF与B的延长线交于点G(1)求证:CDFG;(2)当点F是的中点时,过作EFCD交AD于点,若AB=6c,EF4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。菁优网版权所有专题:几何综合题。分析:(1)利用平行线的性质可证明CDFBF()根据点F是BC的中点这一已知条件,可得CDFBGF,则CD=,只要求出BG的长即可解题.解答:(1)证明:梯形ACD,ABCD,CDF=FGB,DF=GBF,(分)C
14、DBGF(3分)()解:由()CDFBG,又F是BC的中点,BFF,CFBG,DF=GF,CDG,(6分)BDE,F为BC中点,E为D中点,是DA的中位线,=AG=B+BG.B2EFB24=2,CDG=cm(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂3如图,点D,在BC上,且FDAB,FEAC求证:BCFE考点:相似三角形的判定。菁优网版权所有专题:证明题。分析:由FA,FAC,可知B=FE,C=F,根据三角形相似的判定定理可知:ABCFDE.解答:证明:FDAB,FEAC,=D,C=E,ACD.点评:本题很简单,考查的是相似三角形的判定定
15、理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;()如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.4如图,已知是矩形ABCD的边CD上一点,FA于F,试说明:ABFED.考点:相似三角形的判定;矩形的性质。菁优网版权所有专题:证明题。分析:根据两角对应相等的两个三角形相似可解.解答:证明:矩形C中,ABCD,D=90,(2分)BAF=AD(4分)BFA,AFB=90.AFB.(5分)ABEA(分)点评:考查相似三角形的判定定理,关键是找准对应的角.5
16、.已知:如图所示,在ABC和DE中,=AC,A=E,AC=DAE,且点B,A,D在一条直线上,连接BE,C,M,N分别为B,CD的中点(1)求证:BE=C;AN是等腰三角形;()在图的基础上,将ADE绕点A按顺时针方向旋转10,其他条件不变,得到图所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图中延长ED交线段C于点P求证:PDAM.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。菁优网版权所有专题:几何综合题。分析:(1)因为BA=DAE,所以BAE=C,又因为AB=AC,A,利用A可证出ACD,可知BE、CD是对应边,根据全等三
17、角形对应边上的中线相等,可证A是等腰三角形()利用()中的证明方法仍然可以得出()中的结论,思路不变(3)先证出ABMCN(SS),可得出CAN=AM,所以BACMAN(等角加等角和相等),又BA=DAE,所以MADAE=B,所以AM,A和BC都是顶角相等的等腰三角形,所以BDAMN,所以PBDAMN(两个角对应相等,两三角形相似).解答:(1)证明:BACDAE,BAE=CA,AB=A,AD=AE,EACD,BE由ABECD,得ABE=ACD,BE=D,、N分别是BE,D的中点,BM=N.又ABAC,ABACN.AMAN,即AM为等腰三角形.(2)解:(1)中的两个结论仍然成立(3)证明:在
18、图中正确画出线段,由(1)同理可证AMACN,CAN=BAMBCA又BAC=DAE,AN=DEBAC.AMN,ADE和ABC都是顶角相等的等腰三角形.PB和AN都为顶角相等的等腰三角形,PBAM,PDBM,PBDAM点评:本题利用了全等三角形的判定和性质,以及等腰三角形一个顶角相等,则底角相等的性质,还有相似三角形的判定(两个角对应相等的两个三角形相似).如图,E是ABCD的边BA延长线上一点,连接EC,交AD于点F在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.考点:相似三角形的判定;平行四边形的性质。菁优网版权所有专题:开放型。分析:根据平行线的性质和两
19、角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:AFEC;ADC;BECDCF解答:解:相似三角形有AEBEC;AEFCF;CDCF.(3分)如:EFBE在BCD中,ADC,1B,2=3(6分)AEFBEC.(7分)点评:考查了平行线的性质及相似三角形的判定定理7如图,在43的正方形方格中,ABC和DEF的顶点都在边长为的小正方形的顶点上.(1)填空:ABC=135,C= ;(2)判断ABC与EC是否相似,并证明你的结论.考点:相似三角形的判定;正方形的性质。菁优网版权所有专题:证明题;网格型。分析:(1)观察可得:B=FC,故C45;则BC=35,BC=2;(2)观察可得:BC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 经典 相似 三角形 练习题
链接地址:https://www.31ppt.com/p-4278926.html