《整式的加减》知识及题型.doc
《《整式的加减》知识及题型.doc》由会员分享,可在线阅读,更多相关《《整式的加减》知识及题型.doc(8页珍藏版)》请在三一办公上搜索。
1、单项式一知识点:1、单项式:由 数或字母 的乘积组成的式子称为单项式。补充,单独一个 数 或一个 字母 也是单项式,如a,5 。应用:判断下列各式子哪些是单项式?(1);(2);(3) 。解:(1) 不是单项式,因为含有字母与数的差;(2)是单项式,因为是数与字母的积;(3)不是单项式,因为含有字母与数的和,又含有字母与字母的商;练习:判断下列各式子哪些是单项式?(1); (2) abc; (3) b2; (4) 3ab2; (5) y; (6) 2xy2; (7) 0.5 ;(8) 。2、单项式系数:单项式是由数字因数和字母因数两部分组成的,其中的数字因数叫做单项式的系数。应用:指出各单项式
2、的系数:(1) a2h,(2) ,(3) abc,(4)m,(5) 注意:是数字而不是字母。解:(1) a2h的系数是,(2) 的系数是, (3) abc的系数是1(4)m的系数是1, (5) 的系数是 3、单项式次数:单项式中所有 字母 的指数的 和 叫做单项式的次数。注意:是数字而不是字母。应用:1.指出各单项式的次数:(1)a2h,(2),(3)解:(1)因为字母a的指数是2,字母h的指数是1,所以 a2h的次数是3,(2) ,因为字母r的指数是2,字母h的指数是3,,所以的次数是5,(3) , 因为字母a的指数是1,字母b的指数是4, 所以的次数是5。(注意:是数字而不是字母)练习:填
3、空(1)y的系数是_ 次数是 ; 单项式的系数是 _ ,次数是_。(2)的系数是 _ 次数是 ;单项式的系数是 ,次数是 2题型:利用单项式的系数、次数求字母的值(1) 如果是关于x,y的单项式,且系数是2,求m的值;(2) 如果是关于x,y一个5次单项式,求k的值;(3) 如果是关于x,y的一个5次单项式,且系数是2, 求的值;解:(1)由题意得:,因为,所以; (2)由题意得:,因为,所以;(3)由题意得:, 因为,所以; 因为,所以;所以。练习:填空(1) 如果是关于x,y的单项式,且系数是3,则m= 。(2) 如果是关于x,y一个5次单项式,则k= 。(3) 如果是关于x,y的一个5次
4、单项式,且系数是1,则 。(4) 写出系数是2,只含字母x,y的所有四次单项式: 。多项式一知识点:1、 多项式:几个( 单项式 )的和叫做多项式。如 :ab,2xy2,等都是多项式。注意:,都不是多项式。2、多项式的项:在多项式中,每一个单项式(包括前面的符号)叫做多项式的项。其中,不含字母的项叫做常数项。如 :多项式2xy2的项分别是:2,xy2,其中2是常数项;多项式的项分别是:,其中5是常数项; 3、几项式:一个多项式含有几项,就叫几项式。如 :多项式2xy2是二项式;多项式是三项式;多项式是二项式;4、多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。如 :多项式的次
5、数是2;多项式的次数是5;5、几次几项式:如多项式是二次三项式;多项式是五次三项式; 多项式2xy2是三次二项式;6、整式:单项式和多项式统称为整式。如 :都是整式。注意:(1)多项式的次数不是所有项的次数之和。(2)多项式的每一项都包括它前面的符号。(3多项式没有系数。应用:1指出下列多项式的次数及项分别是什么?(1)3x13x2; (2)4x32x2y2。解:(1) 多项式的次数是2,项分别是3x,1,。(2) 多项式4x32x2y2的次数是3,项分别是4x3 ,2x ,2y2。2指出下列多项式是几次几项式。(1) (2) x32x2y23y2。解:(1) 多项式是三次三项式;(2) 多项
6、式x32x2y23y2是四次三项式3在式子中,整式有( ) A.3个B.4个C.5个D.6个(因为 不是单项式,不是多项式,所以不是整式.故选B。)题型:利用多项式的项数、次数求字母的值1若多项式是关于x,y四次三项式,求k的值;分析:项的次数是;项的次数是2;项+1的次数是0,而的次数是四次,所以只能是。解:由题意得:,因为,所以。2若多项式是关于x的三次二项式,求k的值;分析:题目的意思是只含有两项,而,这两项已客观存在,所以只能是这项不存在,即当=0时,=0,这样就只有两项了。解:由题意得:=0,因为,所以。练习:填空1若多项式是关于x,y的四次三项式,则k= 。2若多项式是关于x的三次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式的加减 整式 加减 知识 题型
链接地址:https://www.31ppt.com/p-4278429.html