球墨铸铁的工艺设计.doc
《球墨铸铁的工艺设计.doc》由会员分享,可在线阅读,更多相关《球墨铸铁的工艺设计.doc(35页珍藏版)》请在三一办公上搜索。
1、球墨铸铁的工艺设计第一节 工艺特点一、球墨铸铁的流动性与浇注工艺球化处理过程中球化剂的加入,一方面使铁液的温度降低,另一方面镁、稀土等元素在浇包及浇注系统中形成夹渣。因此,经过球化处理后铁液的流动性下降。同时,如果这些夹渣进入型腔,将会造成夹杂、针孔、铸件表面粗糙等铸造缺陷。为解决上述问题,球墨铸铁在铸造工艺上须注意以下问题:(1)一定要将浇包中铁液表面的浮渣扒干净,最好使用茶壶嘴浇包。(2)严格控制镁的残留量,最好在0.06%以下。(3)浇注系统要有足够的尺寸,以保证铁液能做尽快充满型腔,并尽可能不出现紊流。(4)采用半封闭式浇注系统,根据美国铸造学会推荐的数据,直浇道、横浇道与内浇道的比例
2、为4:8:3。(5)内浇口尽可能开在铸型的底部。(6)在浇注系统中安放过滤网会有助于排除夹渣。(7)适当提高浇注温度以提高铁液的充型能力并避免出现碳化物。对于用稀土处理的铁液,其浇注温度可参阅我国有关手册。对于用镁处理的铁液,根据美国铸造学会推荐的数据,当铸件壁厚为25时,浇注温度不低于1315;当铸件壁厚为6时,浇注温度不低于1425。 二、球墨铸铁的凝固特性与补缩工艺特点 球墨铸铁与灰铸铁相比在凝固特性上有很大的不同,主要表现在以下方面: (1)球墨铸铁的共晶凝固范围较宽。灰铸铁共晶凝固时,片状石墨的端部始终与铁液接触,因而共晶凝固过程进行较快。球墨铸铁由于石墨球在长大后期被奥氏体壳包围,
3、其长大需要通过碳原子的扩散进行,因而凝固过程进行较慢,以至于要求在更大的过冷度下通过在新的石墨异质核心上形成新的石墨晶核来维持共晶凝固的进行。因此,球墨铸铁在凝固过程中在断面上存在较宽的液固共存区域,其凝固方式具有粥状凝固的特性。这使球墨铸铁凝固过程中的补缩变得困难。 (2)球墨铸铁的石墨核心多。经过球化和孕育处理,球墨铸铁的石墨核心较之灰铸铁多很多,因而其共晶团尺寸也比灰铸铁细得多。 (3)球墨铸铁具有较大的共晶膨胀力。由于在球墨铸铁共晶凝固过程中石墨很快被奥氏体壳包围,石墨长大过程中因体积增大所引起的膨胀不能传递到铁液中,从而产生较大的共晶膨胀力。当铸型刚度不高时,由此产生的共晶膨胀将引起
4、缩松缺陷。 (4)在凝固过程中球墨铸铁的体积变化可以分为三个阶段:铁液浇入铸型后至冷却到共晶温度过程中的液态收缩,共晶凝固过程中由于石墨球的析出引起的体积膨胀,铁液凝固后冷却过程中的体收缩。 由于上述凝固特性,从补缩的角度考虑,球墨铸铁在铸造工艺上有以下特点: (1)铸型要有高的紧实度,以使铸型有足够的刚度以抵抗球墨铸铁共晶凝固时的共晶膨胀力。需要指出的是,此时要特别注意采取适当的措施提高铸型的透气性,同时要尽可能地降低型砂中的水份,以防止出现“呛火”。 (2)合理设置浇冒口。球墨铸铁的冒口与普通钢及白口铁不同,球墨铸铁冒口设置的合理性在于它能够充分补充铁液的液态收缩,而当铁液进入共晶膨胀阶段
5、时,浇注系统和冒口颈及时冷冻,使铸件利用石墨析出的膨胀进行自补缩。 (3)砂箱应有足够的刚度,上箱和下箱之间应有牢固的紧固装置。第二节 冒口设计一、冒口模数的定义与计算:一定的液态球铁铸件的冷却速度及其凝固所需要的时间取决于铸型的热性质、所浇注的合金、浇注温度以及铸件的形状和尺寸。假定铸型的性质和浇注温度不变,则冷却和凝固速度完全取决于铸件。其尺寸的影响能用简单的比例关系来正确地描述:这个比例称做模数,用M表示。因为体积是用3或3度量以及面积是用2或2度量,所以模数的单位是或。根据的意见,模数的几何计算只是在定向放热(无限大的板、无限长的圆棒和球)时提供正确数值。其它形状所计算的模数和放热速度
6、真正成比例的理论值相比要小百分之三十。然而等人以及的试验工作发现对于球体、圆柱体和矩形形状,其几何的和“实际的”模数之间并无明显差别。由于在实际应用中几何模数已足够准确,所以下文中用之。为了设计冒口,无论重量或壁厚都不能像模数那样准地代表铸件。对于形状简单的铸件其模数计算是简单的。下图中给出了几个例子。1.立方体a a /6t2.平板水平尺寸至少比“t”大5倍 t /23.正方形棒b b /4 (长度5b)4.圆棒d d /4 (长度5d)5.矩形棒fe(f5e)(22f)(长度5e) 图3-1简单形状铸件模数计算比较复杂的形状需要用假想的表面分割为一些简单的部分。对每个分割的部分其体积份额以
7、1的分数来汁算,每个分体的模数也要计算,根据计算值绘制累积体积份额与模数图。图中的每个部分应按其在铸件上的实际次序来排列。这样的图形可以像阶梯形如图3-2(A)所示,或者几个厚大断面被割开,如图3-2(B)所示。M1M2M3M4M51.0累积的体积份额M0M(A)1.00累积的体积份额M123456(B)图 3-2 累积的体积份额模数图当有的分体形状仍然比较复杂时,应该以近似尺寸的简单立方体积来代表其形状和尺寸。应着重记住,分割各个部分的假想表面并非冷却面,所以对各部分的模数进行计算时,不应该计入这些面。图3-3中虚线表示这些假想的分剖面,而各分割部分则以罗马数字来表示。例1 模数与体积份额图
8、的绘制(尺寸用毫米计,图3-3)图3-3 例1的铸件图3-3的分体I。因为它的截面尺寸比其圆周长度要小得多,所以这一部分可以看作是截面为0.81.0的无限长的杆。模数(简化为横截面积被圆周除来计算):。(注意:分割面并非冷却表面)图3-3的分体。实际体积和冷却表面积按简化的进行计算,其内径是冷却表面积由此:图3-3的分体按无限长的、截面为312、冷却表面积为3+3=6(由周长代替)的杆计算其模数(分割面为非冷却表面)。体积(已简化)模数 =3/6=0.5图3-3的分体近似体积假定这一分体是一块无限大的平板,计算其模数。 =1.2/2=0.6图3-3的分体V近似为一根无限长的杆。体积模数冒口模数
9、为1.20.74=0.89,体积计算为1183。体积份额为:1223.23,由此式 :=0.01 :=0.06 :=0.07 :=0.42 :=0.34 :=0.10用于绘制模数与体积份额图所需要的全部计算现已全部完成。这个图形示于图3-4。冒口I 0.010.270.51.0模数00.10.20.30.40.50.60.70.80.91.0 0.060.59 0.030.3750.600.440.74V0.360.840.10体积份额图3-4图3-3铸件换算为模数与体积份额图用例1来说明绘制模数与体积份额图的一个重要步骤。这个图形总是把冒口看作是铸件与冒口增合体的必须部分。为此必须先知道冒口
10、的体积与模数。模数的计算结果及其分布是与冷却和凝固顺序相一致的。这些知识对于以后要讲的任何一种冒口设计方法部是需要的。二、实用冒口设计从事实践的铸造工作者对前节的结沦可能感到满意,这个结沦这里要重复。从球铁浇注完到凝固开始所经过的时间(平方根)是:。以及,同样的铸件从浇注完到凝固结束所需要的时间(平方根)是:式中:M:模数;:浇注温度;单位用:t:分;M(厘米)=(时/2.54);()只有当球铁浇入湿型时,这两个方程式才都有效。只要冒口的模数大于它所连接着的铸件的分体的模数(表示为或)则冒口保持为液体的时间比铸件分体的要长,这个观点需要立即说明。铸件或其任何部分是不会同对凝固的,下面就这个问题
11、将进一步讨论。说到冒口(明冒口或暗冒口)最重要的是冒口中所包含的液体要与外部大气保持连通。图3-5所示是完全背离正常冒口设计原则的。楔形冒口(示于上模板)首先在其顶部凝结,而顶部凝固的冒口与大气不连通,因而冒口不能发挥其作用。结果铸件产生缺陷。图3-5 形状不正确的冒口通常冒口的形状应使体积与冷却表面的比值(模数)达到最大值。这并不是说推荐冒口应该是球形的,显然球形具有最大的模数。甚至在小冒口中,热流把比较热的(低比重的)液体带到冒口顶部,帮助顶部区域保持为液态。冒口底部温度要稍低一些,也需要有措施以防止冒口颈冻结。所以,一个设计好的冒口其高大于直径,而且冒口下部延伸到冒口颈以下,以便使冒口受
12、热。而且冒口的水平截面通常是圆形的,虽然并非必须这样。因为若用一个冒口补给几个铸件是可以用其它形状的。 由于以上以及其他许多理由,冒口形状不能标准化。然而,在许多设计中可以采用标准的冒口形状,这样可以明显地减少冒口的体积和模数的计算时间。图3-6表示了所推荐的冒口形状以及其和模数有关系的直径和体积的计算公式。注意图3-6中每一个冒口的顶部都可看到一个局部剖视,都表示了冲向冒口图3-6 标准冒口形状内部的“凹窝”。这个凹窝的底部充分受热,从而防止哪怕是很薄的凝固层产生,所以使冒口中液体继续保持与大气接触。楔形或单独插入的(大气压冒口)坭芯可以达到同样的目的。上述讨论使人想起一种几乎过时的冒口设置
13、方法,即采用所谓的压边冒口。图3-7所示是从四个不同角度照的,压边胃口(边常为矩形)搭接于铸件上。这种方法不仅降低铸件的工艺出品率,而且增加治理车间的成本。图3-7 压边冒口与此相反,采用易割芯片则冒口易去除,而且降低清理车间的成本。要是铸造中采用易割芯片,那么坭芯的厚度以及孔口的直径的选择应不减少其有效的连接面积。根据的文章,具有下列关系:表3-1冒口模数、坭芯厚度及孔口直径选择冒口模数坭芯厚度孔口直径1.00.40.420.161.950.772.00.790.840.333.901.533.01.191.260.505.92.324.01.601.700.677.83.105.01.97
14、2.100.839.73.82现在可以从生产陶瓷的厂商买到非常薄的易割芯片,这种易割芯片可以减小所需要的孔口的直径(见图3-8)。而且这种易割芯片也可与预制的暗冒口保温壳一起组装好造入铸型内,这种方法可以适用于所有生产场合(图3-9)。图3-8 陶瓷易割芯片图3-9 预制的配有陶瓷易割芯片的暗冒口保温壳三、控制压力冒口这是实用冒口设计的第三种也是最后一种方法,它同样也是利用了膨胀的好处。控制压力冒口试图控制膨胀所产生的压力,使铸型不致发生塑性交形。这种方法自从球墨铸铁一开始生产就有采用的,但是,它的应用是根据失败、成功等反复试验以及学习了铸造工作者的经验。这是当前应用最普遍的冒口设计方法,只有
15、在下述条件时才不必采用控制压力冒口:a)当铸件模数小于0.4(0.16)时(膨胀所产生的压力不应使湿型变形)。 b)当湿型铸件厚壁处内部允许有缩松时。c)当铸型强度高,能够抵抗膨胀压力而不产生塑性变形时。因为大部分铸铁件采用湿型或壳型都是强度比较低的,而铸件壁厚(至少部分厚度)往往超过10或0.4,因此,大部分铸件需要用控制压力冒口的方法。它比直接实用冒口设计方法的铸件工艺出品率要低,但是在上述情况时,为完全消除缩松,就必须适用它。四、冒口颈设计冒口颈的有效模数应当等于,但是它的尺寸总是小于几何形状和大小相同但分开铸造的单体。主要是由于在铸件与冒口相连接处没有冷却表面而获得了好处。实际上,这两
16、个非冷却表面从邻接的铸件和冒口中获得并将热量传送给冒口颈。延长冒口颈冷却和凝固时间的第二个影响因素是在它附近地区的砂型被炽热。其温度高于铸件和冒口处的砂型,冒口颈愈短,则其温度愈高。内绕道连接冒口(热冒口)也得到类似的及附加的热效果。通过一个简单的实例很容易得出主要影响的程度,让冒口颈断面为方形,而长度为。有效模数(一次近似)很容易看到,上面的公式与无限长的方棒的模数相同。这公式也可用在当冒口颈长度等于a,即为一立方体时。同样尺寸的立方体如果单独分开铸造的话:图3-1)或 同样,更精确的计算也证明冒口颈的有效模数为同样大小、形状的单体模数的1.52倍,因为单体向所有方向散热冷却。前面所谈的第二
17、个影响因素一定要更增加有效模数值()。但是因为不容易定量,它们将被省略不计,只是把的数值简化为0.6。总之,两个方向散热的冒口颈模数的选择为,或(考虑了冒口颈区域冷却较慢): 。冒口颈在造型条件允许的限度内应尽量短一些。因为取决于冶金质量,所以也是如此。在大多数生产情况下值为铸件关键部分模数的3555,这不仅是足够的而且也是安全的。冶金质量越是好,则能够选得更小一些。在减小安全系数、使用方形冒口颈的条件下,以上冒口颈设计原则得到了充分的考验。图3-10表示设计中的一例,铸件的断面(图3-10B)清楚地表明了它的成功。(A)(B)图3-10 控制压力冒口采用立方形冒口颈(A:带冒口的铸件 B:铸
18、件最大部分的断面)第三节 工艺案例下面让我们介绍一些在考虑到球墨铸铁铸造性能的情况下,制定一些铸件的铸造工艺案例。图3-11 75型泥浆泵轴承座及其简明铸造工艺 2. 轧煤机转盘。它的外形尺寸为:直径400,高度140。单重58公斤。图3-12 轧煤机转盘及其简明铸造工艺图3-13 Z6312D抛砂机大臂迥转缸体及其简明铸造工艺3-39 车刀刀杆及其简明铸造工艺3-40 35/39锅炉上接头及其简明铸造工艺3-41 S400钻机上接头及其简明铸造工艺3-42 30型泥浆泵活塞体及其简明铸造工艺3-43 30型泥浆泵十字头及其简明铸造工艺3-44 10/7空压机飞轮及其简明铸造工艺3-45 蜗轮
19、及其简明铸造工艺3-46 300减速机齿轮及其简明铸造工艺3-47 S400钻机大伞齿轮及其简明铸造工艺3-48 1250吨水压机蜗轮齿圈及其简明铸造工艺3-49 S400钻机拔块及其简明铸造工艺3-50 滑管及其简明铸造工艺第四章 球墨铸铁的热处理第一节 固态相变 虽然,钢和铸铁都可以进行热处理,但二者的影响因素有明显区别,简述如下: (1)确定热处理规范时,钢主要是根据含碳量,铸铁则主要是根据含硅量,因为铸铁含碳量比钢高得多,而硅比碳对奥氏体临界温度的影响更大,所以按含硅量确定奥氏休化温度更能保证基体完全奥氏体化。 (2)铸铁含有更多的C、元素,由于它们对奥氏体有更大的稳定化作用,而是铸铁
20、比铸钢有更好的淬透性。 (3)铸铁件结构比铸钢件更复杂,更要注意缓慢加热和延长保温时间,以避免加热不均匀引起内应力和变形。 (4)铸铁中的石墨起着碳库作用,温度超过共析临界范围时,碳溶入奥氏体直到饱和。当以较快速度冷却时碳来不及析出,富碳奥氏体即转变为珠光体;若冷却速度缓慢,碳来得及析出,贫碳奥氏体即转变为铁素体。碳从奥氏体中析出的推动力是温度和含硅量,含硅量越高,碳在奥氏体中的溶解度越小,碳越容易以石墨形式析出。相反,如含有锰、铬、锡及游离的硫则阻碍碳以石墨形式析出。(5)铸铁的共析反应和钢不同,由于第三组元素的存在,使铸铁的共析反应在一个温度范围内完成,不像钢那样在一个温度线上完成。此外,
21、其它元素如P、也影响共析转变温度,下表4-1列出几个元素对共析转变温度的影响。表4-1 元素对共析临界温度的影响元素含量范围(%)每1%含量对上临界点的影响/每1%含量对下临界点的影响/硅磷锰镍0.3-3.50-0.20-1.00-1.0+37+220-37-17+29+220-130-24铸铁的热处理原理:奥氏体转变是共析反应的核心,根据纯合金的等温转变图,共析转变产物与冷却速度有关,缓慢冷却的转变产物为铁素体、珠光体,较快冷却转变为贝氏体,很快冷却转变为马氏体。铸铁的时效处理:用加热方法消除内应力所依据的原理与蠕变概念有关,当金属被加热时其强度、硬度下降,材料松弛或应力降低,这种使材料应力
22、减少的热处理称为时效。虽然降低铸件冷却速度,减少冷却过程的收缩障碍都能减少一部分内应力,但时效能达到最大的应力松弛效果。铸件内应力被消除的程度取决于:原始应力水平;高温保温时间;加热冷却循环周期;化学成分及显微组织。一般原始应力水平越高,时效温度越高,保温时间越长消除内压力的效果越好。结果表明,短时高温时效比长时低温时效降低应力的效果好得多。铸铁的退火:退火是一种使铸件缓慢冷却通过共析临界温度范围、基体转变为铁素体的热处理工艺。经过退火处理的铸件强度、硬度降低,塑性韧性提高。退火还兼有消除内应力的功效。完全退火包括两个阶段:第一阶段在临界温度以上完成碳化物分解、基体均匀化和消除元素偏析;第二阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 球墨铸铁 工艺 设计
链接地址:https://www.31ppt.com/p-4267365.html