燃煤锅炉烟气的除尘脱硫工艺设计.doc
《燃煤锅炉烟气的除尘脱硫工艺设计.doc》由会员分享,可在线阅读,更多相关《燃煤锅炉烟气的除尘脱硫工艺设计.doc(21页珍藏版)》请在三一办公上搜索。
1、题目:20t/h(蒸发量)燃煤锅炉烟气的除尘脱硫工艺设计班级:学号:姓名:指导老师:目录前言41设计任务书1.1课程设计题目1.2设计原始材料62.设计方案的选择确定72.1除尘系统的论证选择782.1.1预除尘设备的论证选择888102.1.2二级除尘设备的论证选择1015172.1.3除尘系统效果分析172.2锅炉烟气脱硫工艺的论证选择172.3风机和泵的选用及节能设备242.4投资估算和经济分析242.5设计结果综合评价253附图1旋风除尘器结构图附图2烟气净化系统图我国大气治理概况我国大气污染严重,污染废气排放总量处于较高水平。为控制和整治大气污染,“九五”以来,我国在污染排放控制技术
2、等方面开展了大量研究开发工作,取得了许多新的成果,大气污染的防治也取得重要进展。在“八五”、“九五”期间,国家辟出专款开展全球气候变化预测、影响和对策研究,在温室气体排放和温室效应机理、海洋对全球气候变化的影响、气候变化对社会经济与自然资源的影响等方面取得很大进展。近年来,我国环境监测能力有了很大提高,初步形成了具有中国特色的环境监测技术和管理体系,环境监测工作的进展明显。我国国民经济的高速发展推动了我国环保科技研究领域不断拓展,我国早期的环境科学偏重单纯研究污染引起的环境问题,现在扩展到全面研究生态系统、自然资源保护和全球性环境问题;特别是污染防治,由工业“三废”治理技术,扩展到综合防治技术
3、,由点源的治理技术,扩展到区域性综合防治技术,并研究开发了无废少废的清洁生产工艺、废物资源化技术等。在大气污染防治技术的研究开发方面,近年来我国取得众多成果,与此同时,如表1所列,大气污染的治理也取得了很大进展。表1近年我国大气污染治理取得的一些进展大气污染防治1995年1996年1997年1998年1999年2000年工业废气治理率(%)82.584.486.387.185.189.8建成城市烟尘控制区数(个)300223192339244623642718烟尘控制区面积(平方公里)125321296115791137961600018000“九五”期间全国主要污染物排放总量控制计划基本完成
4、。在国内生产总值年均增长8.3%的情况下,在大气污染防治方面,2000年全国二氧化硫、烟尘、工业粉尘等项主要污染物的排放总量比“八五”末期分别下降了1015%。结合经济结构调整,国家取缔、关停了8.4万多家技术落后、浪费资源、质量低劣、污染环境和不符合安全生产条件的污染严重又没有治理前景的小煤矿、小钢铁、小水泥、小玻璃、小炼油、小火电等“十五小”企业,对高硫煤实行限产,有效地削减了污染物排放总量。全国23万多家有污染的工业企业中,90以上的企业实现了主要污染物达标排放。46个考核的环境保护重点城市中,25个城市实现了大气质量按功能分区达标,有19个城市(区)被授予国家环境保护模范城市(区)。重
5、点区域的污染治理也取得了阶段性成果。“两控区”二氧化硫排放总量降低,酸雨范围和频率得到控制,保持稳定。北京市环境治理初见成效。重点区域的污染治理带动了全国污染防治工作的全面展开。大气污染防治技术为控制和整治大气污染,“九五”以来,我国在煤炭洁净加工开发技术、煤炭洁净高效燃烧技术、煤炭洁净转化技术、污染排放控制技术等方面开展了大量研究和开发,取得了许多新的成果。与此同时,我国大气污染的防治也取得重要进展。酸雨和二氧化硫控制区的污染防治工作已深入展开。“两控区”内175个地市和电力、煤炭等行业编制了二氧化硫污染防治规划。关停小火电机组198台(装机容量208万千瓦)。8个省、自治区、直辖市开始限制
6、燃煤含硫量。目前,“两控区”年削减二氧化硫排放量近80万吨,93个城市二氧化硫的浓度达到国家环境质量标准。如果中国的燃煤电站的烟气排放要达到目前发达国家规定的水平,SO2的排放量将从每年680万吨下降至170万吨,NOx的排放量将从100下降至30,CO2也将减排2500万吨。中国控制和整治大气污染任重而道远。设计标准主要参考大气污染物排放限值,工艺运行设计达到国家GB13271-91锅炉大气污染物排放标准。除尘脱硫设计原则(1)脱硫率80%。除尘效率97%;(2)技术较为成熟,运行费用低;(3)投资省;(4)能利用现有设施;(5)建造工期短,方便;(6)系统简便,易于操作管理;(7)主体设备
7、的使用寿命8;(8)烟气脱硫以氧化镁为主要吸收剂,并充分利用锅炉排渣水的脱硫容量,达到以废治废,降低运行成本的目的。能用于烟气脱硫和除尘的设备很多,但要满足运转稳定可靠、不影响生产同时去除且压力降较小等要求,以袋式除尘器和旋流板为宜。1.设计任务书1.1课程设计题目设计蒸发量为20t/h的燃煤锅炉烟气的除尘脱硫装置1.2.设计原始材料1.煤的工业分析如下表(质量比,含N量不计):9.0%18.1%2.3%1.7%3.2%65.7%20939水分灰分OSHC低位发热量(kJ/kg)2.锅炉型号:FG-35/3.82-M型3.锅炉热效率:75%4.空气过剩系数:1.25.水的蒸发热:2570.8K
8、J/Kg6.烟尘的排放因子:30%7.烟气温度:473K8.烟气密度:1.18kg/m39.烟气粘度:2.4X10-5pas10.尘粒密度:2250kg/m311.烟气其他性质按空气计算12.烟气中烟尘颗粒粒径分布:平均粒径/m0.537.5152535455560粒径分布/3201520161063713.按锅炉大气污染物排放标准(GB13217-2001)中二类区标准执行:标准状态下烟尘浓度排放标准:200mg/m3;标准状态下SO2排放标准:900mg/m3;2.设计方案的选择确定2.1除尘系统的论证选择(1)锅炉烟气含尘、含硫量计算利用低位发热量、锅炉热效率、水的蒸发热求需煤量蒸发量为
9、20t/h的锅炉所需热量为需煤量设1kg燃煤时燃料成分名称可燃成分含量()可燃成分的量()理论需氧量/mol废气中组分/molCHSO水灰分65.73.21.72.39.018.154.75160.5354.7580.53-0.7554.75CO216H2O0.53SO25H2O合计62.56理论烟气量:62.56+62.560.79/0.21=297.9(mol/kg)在标准状态下的体积为:297.922.410-3=6.67(m3/kg)理论废气量:62.560.79/0.21+54.75+16+0.53+5=311.62mol/kg在标准状态下理论废气体积:311.6222.410-3=
10、6.98(m3)在标准状态下实际烟气体积:6.98+6.67(1.2-1)=8.31(m3)SO2的浓度:C=4082mg/m3烟尘的浓度:C=6534mg/m3在473T时实际烟气量:Q=47951m3/h(2)烟尘的除尘效率计算按锅炉大气污染物排放标准(GB13217-2001),可以计算出烟尘的除尘效率要达到:97(3)SO2的脱硫效率计算按锅炉大气污染物排放标准(GB13217-2001),计算出SO2的脱硫效率要达到:78(4)方案初步设计先用二级除尘系统除尘(一级预除尘用旋风除尘器、二级用袋式除尘器),再用旋流板塔氧化镁法脱硫。注:考虑到压损过大对除尘器的不利影响和对操作的要求高,
11、作为一级预除尘除尘要求不高,因此,确定旋风除尘器型号时要求阻力不大于900Pa。3.1除尘系统的论证选择3.1.1预除尘设备的论证选择烟气的预除尘设备一般选用重力沉降室、惯性除尘器、旋风除尘器、多管旋风除尘器和喷淋洗涤塔等。它们基本性能如表21示。表21除尘设备的基本性能除尘器名称阻力(Pa)除尘效率()初投资运行费用重力沉降室501504060少少惯性除尘器1005005070少少旋风除尘器40013007092少中多管旋风除尘器80015008095中中喷淋洗涤塔1003007595中中表22各种除尘器设备费、耗钢量及能耗量指标除尘器名称所占空间体积m3/(1000m3/h)存储设备费(比
12、值)耗钢量kg/(m3/h)能耗量(Kj/m3)重力沉降室20401.0惯性除尘器0.71.23.06.00.150.3旋风除尘器约1.751.04.00.050.10.81.6多管旋风除尘器3.92.55.00.070.151.64.0表23除尘器名称除尘作用力最佳粒径/m投资比较阻力Pa温度备注重力尘降室重力100低200100050低4001200400除尘效率较低旋风除尘器离心力520中400200060粒径分布/32015201610637分级效率/13.335.954.970.981.987.991.694100总效率/67.2经过预除尘后(一级处理),烟尘浓度是6534(1-67
13、.2)=2144mg/m3二级除尘的效率将要达到:(2144-200)/2144=90.673.1.2二级除尘设备的论证选择在选择除尘技术时,应充分考虑经济性、可靠性、适用性和社会性等方面的影响。除尘技术的确定受到当地条件、现场条件、燃烧煤种特性、排放标准和需要达到的除尘效率等多种因素的影响。针对目前环保要求、污染物排放费用的征收情况以及静电除尘器和布袋除尘器在性能上的差异和在各行各业应用的实际情况,对两种除尘器在实际应用中的基本性能做一个简单客观的对比。1)除尘效率布袋除尘器:对人体有严重影响的重金属粒子及亚微米级尘粒的捕集更为有效。通常除尘效率可达99.99%以上,排放烟尘浓度能稳定低于5
14、0mg/Nm3,甚至可达10mg/Nm3以下,几乎实现零排放。从目前电力行业燃煤锅炉应用的情况来看,布袋除尘器的排放能保证在30mg/Nm3以下。呼和浩特电厂两台200MW机组的锅炉烟气净化采用了布袋除尘器,从CEMS系统长期自动监测的结果和权威检测单位的测试人员人工采样测试的结果来看,排放浓度均低于27mg/Nm3。电除尘器:随着国家环保标准的进一步提高和越来越多的电厂燃用低硫煤(或者经过了高效脱硫),比电阻大,即使达标也变得越来越困难。而布袋除尘器的过滤机理决定了它不受燃烧煤种物化性能变化的影响,具有稳定的除尘效率。针对目前国家环保的排放标准和排放费用的征收办法,布袋除尘器所带来的经济效益
15、是显而易见的。2)系统变化对除尘器的影响燃煤电厂的煤种相对稳定,但也不能避免遇到煤种或煤质发生变化的时候;锅炉系统是一个经常变动和调节的系统,因此从锅炉中出来的烟气物化性能、烟尘浓度、温度等参数也不能保证不发生变化。这一系列的变化,针对不同的除尘器会引起明显不同的变化。下面从主要的几个方面进行对比:(1)送、引风机风量不变,锅炉出口烟尘浓度变化除尘器:烟尘浓度的变化只引起布袋除尘器滤袋负荷的变化,从而导致清灰频率改变(自动调节)。烟尘浓度高滤袋上的积灰速度快,相应的清灰频率高,反之清灰频率低,而对排放浓度不会引起变化。对静电除尘器:烟尘浓度的变化直接影响粉尘的荷电量,因此也直接影响了静电除尘器
16、的除尘效率,最终反映在排放浓度的变化上。通常烟尘浓度增加除尘效率提高,排放浓度会相应增加;烟尘浓度减小除尘效率降低,排放浓度会相应降低。(2)锅炉烟尘量不变,送、引风机风量变化对布袋除尘器:由于风量的变化直接引起过滤风速的变化,从而引起设备阻力的变化,而对除尘效率基本没有影响。风量加大设备阻力加大,引风机出力增加;反之引风机出力减小。对静电除尘器:风量的变化对设备没有什么太大影响,但是静电除尘器的除尘效率随风量的变化非常明显。若风量增大,静电除尘器电场风速提高,粉尘在电场中的停留时间缩短,虽然电场中风扰动增强了荷电粉尘的有效驱进速度,但是这不足以抵偿高风速引起的粉尘在电场中驻留时间缩短和二次扬
17、尘加剧所带来的负面影响,因此除尘效率降低非常明显;反之,除尘效率有所增加,但增加幅度不大。(3)温度的变化对布袋除尘器:烟气温度太低,结露可能会引起“糊袋”和壳体腐蚀,烟气温度太高超过滤料允许温度易“烧袋”而损坏滤袋。但是如果温度的变化是在滤料的承受温度范围内,就不会影响除尘效率。引起不良后果的温度是在极端温度(事故/不正常状态)下,因此对于布袋除尘器就必须设有对极限温度控制的有效保护措施。对静电除尘器:烟气温度太低,结露就会引起壳体腐蚀或高压爬电,但是对除尘效率是有好处的;烟气温度升高,粉尘比电阻升高不利于除尘。因此烟气温度直接影响除尘效率,且影响较为明显。(4)烟气物化成分(或燃烧煤种)变
18、化对布袋除尘器:烟气的物化成份对布袋除尘器的除尘效率没有影响。但是如果烟气中含有对所有滤料都有腐蚀破坏的成分时就会直接影响滤料的使用寿命。对静电除尘器:烟气物化成份直接引起粉尘比电阻的变化,从而影响除尘效率,而且影响很大。影响最为直接的是烟气中硫氧化物的含量,通常硫氧气化物的含量越高,粉尘比电阻越低,粉尘越容易捕集,除尘效率就高;反之,除尘效率就低。另外烟尘中的化学成分(如硅、铝、钾、钠等含量)的变化也将引起除尘效率的明显变化。(5)气流分布对布袋除尘器:除尘效率与气流分布没有直接关系,即气流分布不影响除尘效率。但除尘器内部局部气流分布应尽量均匀,不能偏差太大,否则会由于局部负荷不均或射流磨损
19、造成局部破袋,影响除尘器滤袋的正常使用寿命。对静电除尘器:静电除尘器非常敏感电场中的气流分布,气流分布的好坏直接影响除尘效率的高低。在静电除尘器性能评价中,气流分布的均方根指数通常是评价一台静电除尘器的好坏的重要指标之一。(6)空气预热器及系统管道漏风对布袋除尘器:对于耐氧性能差的滤料会影响布袋寿命,比如:RYTON滤料,但是除尘效率不受影响。由于混入冷风系统风量增加导致系统阻力增加。对静电除尘器:设备阻力无明显变化,但是系统风量增加提高了电场风速对除尘效率有影响。3)运行与管理(1)运行与管理对布袋除尘器:运行稳定,控制简单,没有高电压设备,安全性好,对除尘效率的干扰因素少,排放稳定。由于滤
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 燃煤 锅炉 烟气 除尘 脱硫 工艺 设计
链接地址:https://www.31ppt.com/p-4267199.html