热释电报警电路设计黄河科技学院课程设计详解.doc
《热释电报警电路设计黄河科技学院课程设计详解.doc》由会员分享,可在线阅读,更多相关《热释电报警电路设计黄河科技学院课程设计详解.doc(27页珍藏版)》请在三一办公上搜索。
1、热释电检测报警电路设计摘 要本系统采用了热释电红外传感器,它的制作简单、成本低、安装比较方便,而且防盗性能比较稳定,抗干扰能力强、灵敏度高、安全可靠。这种防盗器安装隐蔽,不易被盗贼发现,同时它的信号经过单片机系统处理后方便和PC机通信,便于多用户统一管理。本设计包括硬件和软件设计两个部分。硬件部分包括单片机控制电路、红外探头电路、驱动执行报警电路、LED控制电路等部分组成。处理器采用51系列单片机AT89C51,整个系统是在系统软件控制下工作的。关键词: AT89C51,红外传感器,数据采集,报警电路目 录1 绪论11.1 课题描述11.2 基本工作原理及框图12 相关芯片及硬件电路设计22.
2、1 AT89C51芯片22.1.1 AT89C51的功能特性32.1.2 AT89C51的主要性能参数32.1.3 时钟电路的设计72.1.4 复位电路的设计72.1.5 数码管显示报警电路的设计82.1.6 声音报警电路的设计92.2热释电红外传感器原理92.3调整电路的设计102.4 系统硬件电路的选择及说明103 系统软件及程序设计103.1 Proteus软件简介及使用103.2 中断程序主要流程133.3 程序设计133.2.1初始化程序:133.2.2延时程序:143.2.3报警显示程序:144 系统软件及程序设计144.1 Keil软件简介144.2应用Keil进行软件仿真15总
3、 结17致 谢18参考文献19附录一A 原理图20附录一B PCB打样图21附录二 仿真原理图22附录三 源程序231 绪论1.1 课题描述 随着时间的推移,计算机革命的完成,信息高速公路的发展,人们生活水平得到很大的提高,对私有财产的保护意识在不断的增强,因而对防盗措施提出了新的要求。本设计就是为了满足现代住宅防盗的需要而设计的家庭式电子防盗系统。本次设计所用的这种热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,热释电红外传感器既可用于防盗报警装置,也可用于制动控制、接近开关、遥测等领域。经过本次课程设计会使我们进一步对单片机有个感观认识,增强动手能力。使理
4、论与实际相结合。1.2 基本工作原理及框图本课程设计包括硬件和软件设计两个部分。模块划分为数据采集、键盘控制、报警等子模块。电路结构可划分为:热释电红外传感器、报警器、单片机控制电路、LED控制电路及相关的控制管理软件组成。用户终端完成信息采集、处理、数据传送、功能设定、本地报警等功能。就此设计的核心模块来说,单片机就是设计的中心单元,所以此系统也是单片机应用系统的一种应用。单片机应用系统也是有硬件和软件组成。硬件包括单片机、输入/输出设备、以及外围应用电路等组成的系统,软件是各种工作程序的总称。单片机应用系统的研制过程包括总体设计、硬件设计、软件设计等几个阶段。从设计的要求来分析该设计须包含
5、如下结构:热释电红外传感探头电路、报警电路、单片机、复位电路及相关的控制管理软件组成;它们之间的构成框图如图1总体设计框图所示: AT89S51复位电路传感器报警执行电路LED发光显示调整电路驱动驱动驱动发光二极管图1基本工作原理框图处理器采用51系列单片机AT89S51整个系统是在系统软件控制下工作的。设置在监测点上的红外探头将人体辐射的红外光谱变换成电信号,经放大电路送出TTL 电平至AT89S51单片机。在单片机内,经软件查询、识别判决等环节实时发出入侵报警状态控制信号。1驱动电路将控制信号放大并推动声光报警设备完成相应动作。当报警延迟10s一段时间后自动解除,当警情消除后复位电路使系统
6、复位 4 。2 相关芯片及硬件电路设计2.1 AT89C51芯片AT89S51单片机是美国Atmel公司生产低电压,高性能CMOS 8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(EPROM)和128 bytes的随机存取数据存储器(RAM),器件采用Atmel公司的高密度、非易失性存取技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash 存储单元,功能强大。图2 AT89S51 功能方块图图2为AT89S51片机的基本组成功能方块图。由图可见,在这一块芯片上,集成了一台微型计算机的主要组成部分,其中包括CPU、存储器、可编程I/O口、定时器/
7、计数器、串行口等,各部分通过内部总线相连。下面介绍几个主要部分。2.1.1 AT89C51的功能特性AT89C51提供以下标准功能:4K字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个十六位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。2.1.2 AT89C51的主要性能参数1主要特性:与
8、MCS-51 兼容 4K字节可编程闪烁存储器 寿命:1000写/擦循环数据保留时间:10年全静态工作:0Hz-24Hz三级程序存储器锁定128*8位内部RAM32可编程I/O线两个16位定时器/计数器5个中断源 可编程串行通道低功耗的闲置和掉电模式片内振荡器和时钟电路2管脚说明:图3 AT89C51引脚图VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原
9、码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的
10、高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚 备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)
11、P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止AL
12、E的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP
13、)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。3振荡器特性:XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。4芯片擦除:整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外
14、,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止 3 。2.1.3 时钟电路的设计XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12MHZ,
15、一个振荡周期为1/12us,故而一个机器周期为1us。如图4所示为时钟电路。LM35的主要性能参数。图4 时钟电路图2.1.4 复位电路的设计复位方法一般有上电自动复位和外部按键手动复位,单片机在时钟电路工作以后, 在RESET端持续给出2个机器周期的高电平时就可以完成复位操作。例如使用晶振频率为12MHz时,则复位信号持续时间应不小于2us。该复位电路连接单片机的RESET引脚,如图5示为复位电路 5 。图5 复位电路图2.1.5 数码管显示报警电路的设计由2个数码管接上电阻后连上单片的P0,P2输入输出口的引脚,外接VCC,当单片机的相应引脚被置低电平后,数码管显示相应的数字,起到报警作用
16、。注:当P0口输出0F9H时,数码管DS1显示数字1,当P2口输出025H时,数码管DS2显示数字2。6图6所示为数码管报警电路。图6 发光二极管报警电路图2.1.6 声音报警电路的设计如下图所示,用一个Speaker和三极管、电阻接到单片机的P2.0引脚上,构成声音报警电路,低电平触发,如图7示为声音报警电路 7 。图7 声音报警电路图2.2热释电红外传感器原理本设计所用的热释感器就采用这种双探测元的结构。其工作电路原理及设计电路如图8所示, 在VCC电源端利用C1和R2来稳定工作电压,同样输出端也多加了稳压元件稳定信号。当检测到人体移动信号时,电荷信号经过FET放大后,经过C2,R1的稳压
17、后使输出变为高电位,再经过NPN的转化,输出OUT为低电平 2 。图8 热释电红外传感器原理图2.3调整电路的设计如图9所示为最基本的调整电路,图中1为输出,接单片机的P0.7,P0.6输入输出口。图9 调整电路电路图2.4 系统硬件电路的选择及说明硬件电路的设计见附录一A、B示,从以上的分析可知在本设计中要用到如下器件: AT89C51、热释电红外传感器、LED、发光二极管、蜂鸣器等一些单片机外围应用电路。3 系统软件及程序设计3.1 Proteus软件简介及使用Protues软件是英国Labcenter electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 热释电 报警 电路设计 黄河 科技学院 课程设计 详解
链接地址:https://www.31ppt.com/p-4267115.html