核素示踪在物质代谢研究中.doc
《核素示踪在物质代谢研究中.doc》由会员分享,可在线阅读,更多相关《核素示踪在物质代谢研究中.doc(13页珍藏版)》请在三一办公上搜索。
1、第十三章 核素示踪在物质代谢研究中的应用示踪的放射性原子可以与被示踪的原子一样能够在机体内运行、分布并参与机体的各种转化、代谢过程。如果人们能够了解示踪剂在机体内经历的复杂过程,便能解释、预示机体内该物质的生理、生化代谢规律。所以,放射性核素示踪技术也就成为研究物质(包括药物,以下均统称物质)代谢的重要手段。第一节 核素示踪用于物质吸收的研究研究物质吸收的主要目的是了解物质吸收量(或吸收率)、吸收时的化学形态及吸收的解剖部位。吸收速率则常在示踪动力学中加以研究。一、物质吸收百分率的示踪研究不同的物质吸收率不同,并易受生理、病理及环境等因素变化的影响。实验中常研究影响吸收的物质方面(物质的性质、
2、溶解度等)和机体方面的因素,以阐明吸收率的变化。为更确切地反映机体吸收率的变化,通常都采用整体示踪技术。在一次给予示踪剂后测量其相对吸收率或吸收百分率。一般实验中常以消化道吸收率的研究为代表。但研究方法常因研究对象和研究目的不同而异。(一)整体计数法测定吸收量 此类方法适用于某种在机体内更新速度缓慢的物质,用发射射线的核素标记物作为示踪剂,经口服或灌胃引入体内,待粪便中基本上无放射性时,方可用计数器从体表测量机体内残存的放射性含量,除以投入的放射性总量,即得吸收率。小动物的整体测量可用普通的计数器。若被研究的示踪剂为非挥发性的,也可用灰化法制备样品,测定其残留灰中的放射性。而大动物和人的整体测
3、量,则需要全身测量装置。如已知维生素B12在人体更新慢(T121年),一次口服58Co标记的维生素B12后的710 d,受试者体内放射性达到坪值,测其放射性活度,并除以投入放射性活度,便求出吸收率。正常人的吸收率为4580;恶性贫血患者则为017。本方法不需进行样品处理,投入的示踪剂量小(3.7 kBq人-1次-1),但由于需要全身测量装置,使本方法的应用受到一定限制。(二)测量未被吸收残留量一次经口服或给实验动物灌胃一定量(摄入量)的、能被肠道吸收的示踪剂,在一定的时间内收集动物的粪便,测定其在粪便中的残留量。根据未被吸收的残留量,按公式(13.1)再计算示踪剂的吸收百分率。 (13.1)此
4、公式适用于那些经吸收后再被消化道排出的量可以忽略不计的示踪剂。如甘油三酯,正常人口服125I-甘油三酯,72 h粪便中残余放射性的百分率为25;吸收率则为9598。本法是由未被吸收的残留量计算吸收率的,而未被吸收的放射性残留量又受胃肠道的功能状态和全身性疾病的影响。此外,常因粪便收集不全,样品分离提纯不彻底,实验也会出现误差。所以,实验中应予以注意。(三)尿排出量的测定这是一种根据吸收后由尿排出的数量推算吸收率的方法。如已知某物质经肾排出,一次口服示踪剂后,在一定时间内测定由尿排出示踪剂的总量,可以反映吸收率。这种方法常受欲测物在体内的代谢、积聚及肾功能的影响,应用范围受限制。另外,对那些也能
5、由肾以外其他途经排出的物质,本法推算偏低,必须进行校正,即同时测定非经口给示踪剂后尿中的排出量,计算相对吸收率。或用口服不同核素标记物进行校正。例如VitB12缺乏与大红细胞性贫血的发病有关。在体内VitB12只有与胃粘膜细胞分泌的内因子相结合,方能被吸收。正常情况下,VitB12从尿中排出的量甚微(00.25 g/d)。病理条件下VitB12的吸收和排泄都发生改变,临床上常测定尿中VitB12的量作为诊断指标。为准确起见,如同时一次口服57Co-VitB12和58Co-VitB12,用双标记法测定24 h尿中57Co-B12和58Co-B12的排出量,对吸收率进行校正。(四)测定血浆中示踪剂
6、含量胃肠道给予的示踪剂,经消化作用后可被吸收进入血液。所以,测量血液中示踪剂的含量,可以直接了解示踪剂的吸收情况。可是,口服示踪剂后血浆中的浓度是边吸收边清除的结果,与一次静脉注射后的情况不同,静脉注射后则100地进入血液,其浓度随时间而下降,下降的速度主要取决于清除(进入组织、代谢、排泄等)速率。而口服示踪剂时,血液中浓度下降,同时取决于吸收率和清除率。为反映吸收率便提出了测定血浆中示踪物浓度时相曲线下的面积(area under curve,AUC),即是指血浆中示踪剂浓度对时间作图,所得的曲线下的面积。该面积可由积分求得。梯形规则法则是最简便的计算方法。为准确地反映示踪物在血浆中的浓度,
7、实验中常对比研究静脉注射和口服剂量相同的同种示踪剂的吸收率。当血浆清除图13-1 血浆示踪剂放射性浓度-时相曲线和曲线下面积(AUC)a:口服与静脉注射相比较(绝对生物利用度) b:两种口服方案或剂型相比较(相对生物利用度)速率常数和分布容积相同时,口服后的AUC或等于或小于静脉注射后的AUC。口服的AUC除以静脉注射的AUC,所得到的百分率,即绝对生物利用度(absolute bioavailability),是吸收率的估计值。口服两种不同剂型的示踪剂后,所得到的两个AUC的比值,则称为相对生物利用度(relative bioavailability)。 它能反映两种剂型示踪剂吸收率的相对大
8、小(图13.1)。为排除血浆清除率对实验结果的影响,最好采用双标记实验方法。或在同一时间内将不同核素标记的同一物质,以不同途径或不同的口服方案引入同一体内,然后再进行双标记测量,并绘出两条曲线和计算出两个相应的AUC。进行这类实验时,不仅要注意区别示踪剂及其代谢产物,也应注意示踪剂剂量。若两个示踪剂剂量不相同时,应进行归一化处理。二、物质吸收部位的研究食物在消化道内的吸收,是指各种食物的消化产物、水分和盐类等物质通过肠粘膜上皮细胞进入血液和淋巴液的过程。不同物质在消化道的吸收部位是否相同,只能借助核素示踪技术来解答,因为它能有效地区别开内源性和外源性物质,根据消化道不同部位外源性示踪剂的放射性
9、活度的变化来确定该类物质的吸收部位。为进行这方面的研究,常采用下列几种实验方法。 (一)离体肠段实验 离体肠段实验,是取出部分肠段,将其翻转过来,结扎两端成肠袋,所以又称为翻转肠袋法。因去除淋巴管和血管,属非生理性的实验。将肠袋放在含示踪剂的缓冲液内培育,观察袋中放射性示踪剂出现的情况,以反映粘膜吸收的速度。这类实验主要是依据扩散原理设计的。将肠管粘膜翻转向外,以扩大与标记物的接触面积和吸收面积,同时被吸收物质出现于浆膜侧,因其容积小,可准确地进行微量吸收测定。虽然这种实验与机体条件相差较大,但有一定的研究意义。此法多用于有无逆浓度梯度吸收、吸收方向及影响吸收的代谢阻断剂及其类似物的研究。(二
10、)观察不同肠段腔内示踪剂含量的变化食物的吸收主要发生在小肠内,如铁,虽然小肠是主要吸收地点,其中十二指肠吸收得特别快。又如示踪实验证明,45Ca既可在肠道内吸收,又可由肠道排出。为证明45Ca在肠道内吸收的确切部位,曾给大鼠口服45Ca的可溶性盐,在不同时间间隔内杀死大鼠。分段测定肠内容物的放射性。结果发现,在最初的几小时内,肠道内容物的放射性活度已降至原活度的50;其中小肠上23的放射性最强,可见Ca的吸收主要在小肠的上23段处。这方法是一种普通的研究方法,但关键在于收集不同肠段的内容物。(三)口服示踪剂后观察消化道壁内示踪剂含量的变化本方法适用于吸收后在肠壁内停留时间较长的物质,如脂肪。曾
11、有人在给大鼠口服125I-橄榄油后26 h内,分批杀死大鼠,取出小肠,洗去内容物后并将其分成4段,然后分别测定各段肠壁的放射性。结果发现在自上而下的第三个14段壁内的放射性最高。若预先切除该段,并将第2个14与第4个14肠段吻合,再口服125I-橄榄油进行上述实验,则不会出现类似的峰值。这就表明,脂肪在小肠的第3个14段吸收率最高。(四)测量消化道不同部位血液中示踪剂的含量此法原理与测定血液中示踪剂的浓度或AUC相似,所不同的是该方法将被研究物质引入特定的观察部位,可用对比的方法研究其与口服或静脉注射示踪剂吸收率的差异。这种方法多用于药物学研究。常用的方法有两种:用手术方法将欲研究的部位与消化
12、道其他部位离,仅保持血循环,再将示踪剂引入其中,测量血液浓度或 AUC。此方法又可分为急、慢性两种。切除欲研究的部位,比较研究切除前后血液中示踪物浓度的变化或AUC。该方法可用于外科手术治疗的病人。如用此法研究125I-胆固醇在肠道内的吸收情况时,发现回肠至少吸收口服胆固醇的60。三、物质吸收时化学形式的研究食物在消化道中需经过一个极复杂的化学过程才能被吸收。但因食物成分的降解、吸收及吸收后在肠壁内发生的变化是一个连续的动态变化过程,用一般生化方法是很难进行分析的,这无疑对阐明食物吸收的形式带来了困难。因此,营养学家常需借助于核素示踪技术来研究上述问题。(一)单标记实验研究此类实验常将待研究物
13、质的不同组成部分加上标记核素,制备成不同的标记物A与B。口服后测定血液或淋巴液中的放射性,追踪标记原子的去向,以确定待研究物的吸收形式。如脂肪吸收的研究,已知膳食中的脂肪主要是甘油三酯(或三脂肪酰),为了解吸收入血浆的游离的脂肪酸和甘油是否是甘油三酯的直接组成成分,分别用羧基上带14C标记原子的游离脂肪酸和14C-甘油进行实验。结果表明,肠粘膜可以吸收游离脂肪酸,并发现1012C以下的脂肪酸,如癸酸能直接扩散入门静脉,但不参加甘油三酯的合成; 7090的长链脂肪酸被小肠粘膜吸收后,参与合成甘油三酯并进入淋巴液中;而14C-甘油很少出现在甘油三酯中。因为甘油被吸收后,直接进入肝脏,或被ATP活化
14、为3-磷酸甘油,供合成甘油三酯时应用,游离的甘油不能在肠壁内参与甘油三酯的合成。现已阐明甘油三酯在小肠粘膜内的再合成主要是以2-单酰甘油为基础,与长链脂肪酰辅酶A结合成甘油三酯。(二)双标记示踪实验此类实验是利用在分子不同部位带有不同标记原子的示踪剂进行的双标记实验,以追踪两者的去向,对具有病理作用的物质胆固醇酯的吸收方式的研究是这类实验的代表。如Shiratori和Goodman的实验,利用3H标记苯环上7位和14C标记脂肪酸羧基的胆固醇酯进行其吸收方式的研究。结果发现,胆固醇酯中的胆固醇与脂肪酸吸收率不同,被吸收的脂肪酸主要出现在甘油三酯中,出现在胆固醇酯中的量很少;淋巴液中胆固醇酯的脂肪
15、酸主要是非标记的内源性脂肪酸。可以说,胆固醇酯在消化道内先水解成游离的胆固醇和脂肪酸,然后分别被吸收。脂肪酸主要参与甘油三酯的合成;而游离胆固醇主要与内源性脂肪酸形成胆固醇酯。第二节 物质分布与转运的研究生物体内的物质处于不断更新与动态平衡之中,各种物质在机体内都有各自的分布与转运规律。打破了这种规律,就会出现病理改变。因此,讨论物质的体内分布与转运规律,不仅有利于了解生理活动,同时对探讨某些疾病的发病机制也有重要的意义。药物在体内发挥作用,也必须通过一定机制转运并在作用的器官、细胞或细胞器中有高度的富集,以达到最大的药效比。放射性核素示踪技术则是研究物质分布与转运的较为理想方法。一、研究方法
16、物质分布与转运的研究方法相似,而物质转运的实验设计更强调动态观察,基本研究方法均包括示踪剂的引入、实验观察与实验结果的处理3个步骤:。实验观察方法主要是放射自显影和取标本测量示踪物的含量。无论采用哪种方法,都应该区分示踪物和带标记的产物。此外,在分布研究中还应该注意时间因素的影响。 另外,根据研究目的的不同,物质分布与转运研究划分为4个水平:宏观水平(器官水平)、细胞水平、亚细胞水平和分子水平。二、物质分布实验(一)物质分布研究 标记物的分布是研究物质结构与功能间互相关系的前提。为精确地确定标记物的分布,要注意下列问题。 1.示踪剂的引入根据研究水平的不同,示踪剂的引入方法也不同。器官水平的物
17、质分布研究,需由静脉或腹腔(小动物多用)引入示踪剂,有时须经特殊途径(如侧脑室注射)给整体动物引入示踪剂。对结构精细的、量极少的物质或生物大分子,进行亚细胞水平或分子水平的研究时,应采用离体实验,试管内给予示踪剂的方法。 2.示踪剂对示踪剂的选择除遵守一般的原则外,在物质分布的研究中,必须注意下列几点:使用的标记化合物不一定要求严格的定位标记,因为此项研究目的在于观察物质的分布而不是物质的转化。要求示踪核素原子应标记牢固,不脱落或交换。标记物的放射化学纯度要高,否则会产生错误的研究结果,尤其在中药研究用同位素交换法制备标记物时,更应注意。示踪剂比活度依据研究水平而定,器官水平研究需要放射性比活
18、度较低的示踪剂;亚细胞水平和分子水平的研究需用高比活度的示踪剂。3.标本的处理实验中要根据研究目的和测量方法进行样品的处理和标本制备。但应指出的是,用层析或电泳等方法分离示踪剂与代谢产物时,往往会导致示踪剂或代谢产物的丢失。因此,实验中需作丢失校正,常称为回收率校正。回收率校正可通过预实验或平行实验求出平均回收率,作为分布实验的校正因子(不同类型或不同量的组织回收率不同,应分别求出校正因子)进行校正,而最好的方法是用双标记示踪方法。如用示踪剂A作分布研究,示踪剂B作回收率测定,并要求两者的化学结构相同或相似。若标记核素不同时,配制的工作液的放射性浓度必须严格标定。双标记法作回收率校正的实验步骤
19、如下:向含标记物A的实验体系中加入一定量的、已知放射性活度为DB的示踪剂B,取组织制备匀浆,纯化后制成样品;进行双标记测量A、B两示踪剂的总活度为 DADB;计算回收率=DBDB;计算标本中标记物A的活度,即DA=DA回收率。在对比研究中,若各组织的回收率基本相同,可不作回收率校正。4.数据处理分布实验中数据处理的关键在于合理地选择参数。以取标本测量示踪剂含量为例来讨论数据处理中的问题。示踪剂的量以Bq为单位,若样品的测量效率相同时,也可以用cpm为单位。无论是哪一级水平的分布研究,都将测得的dpm换算成放射性含量,如Bqg组织或 BqmL液体,Bq106个细胞,Bqmg蛋白质或DNA,Bqm
20、g核酸,以反映示踪剂在组织或组织某一组分中的浓集程度,并可保证不同的组织标本间的可比性。离体实验时,试管中给予相同剂量的示踪剂,放射性计数可直接相比较。整体实验若以每克组织给予相同的示踪剂,组织标本间也可相互比较。若每克体重投入示踪剂的量不同时,可用两种方法进行校正:将测得的组织放射性含量除以每克体重给予的示踪剂的量;测定实验动物血浆中的放射性含量,将组织或某组分放射性含量除以血浆的放射性含量。后一种方法能排除示踪剂清除率不同造成的影响。可见,合理地选择参数,保障数据的可比性,可为以后的统计处理打下基础。(二)物质分布实验的应用物质分布示踪研究广泛地应用于药理学和毒理学研究中。如用放射自显影法
21、观察到14C-氟烷主要分布在大脑和小脑白质,奠定了氟烷起全身麻醉作用的理论基础。又如我国学者用14C-鱼腥草素作分布实验,研究鱼腥草素对支气管炎的疗效时,发现14C-鱼腥草素在气管组织内有一定的浓集。近年来,又设计出一些特定的标记物作为探针(probe),根据它们在体内的分布,研究对它们有特异亲和力的配基在不同水平上的分布情况,能够对其结构与功能间的关系进行更深入的了解。在这方面较突出的应用有标记抗体、标记的互补RNA(DNA)及标记的受体配基。随之发展起来的放射免疫显像与治疗、DNA原位分子杂交、反义核酸显像及放射性反义核酸双重治疗、受体配基分析、放射受体显像与受体介导靶向治疗等技术,已成为
22、肿瘤、遗传性疾病和内分泌系统疾病的病因研究和诊断、治疗中不可缺少的研究手段。三、物质在血浆与组织间的转运物质转运的研究包括血液和组织间的转运、细胞内外的转运及亚细胞结构与细胞浆间的转运。物质的转运与细胞的生理活动、疾病的发病机制关系密切。放射性核素示踪技术能够在转运双方原有物质浓度不变的情况下进行研究。所以,已成为物质转运研究不可缺少的手段。血液和组织间物质转运的示踪研究应用广泛。通常是在示踪剂引入血液后的不同时间内,取组织或者同时取血液和组织进行示踪剂含量的测定。这类实验主要应用于以下3个方面:(一)动态平衡的证实这类实验是依据下面的事实设计的。组织中某种物质的含量稳定不变,却经常能与血液进
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 核素 物质 代谢 研究

链接地址:https://www.31ppt.com/p-4265777.html