二次函数与平行四边形存在性问题精编版.doc
《二次函数与平行四边形存在性问题精编版.doc》由会员分享,可在线阅读,更多相关《二次函数与平行四边形存在性问题精编版.doc(17页珍藏版)》请在三一办公上搜索。
1、老师姓名学生姓名学管师 学科名称年级上课时间 月 日 _ _ :00- _ :00课题名称二次函数与平行四边形的存在问题教学重点教学过程【知识梳理】1、平行四边形的性质是什么?2、在坐标系中,平行四边形又有哪些性质? 3、解决问题的策略:根据要求画出满足要求的图形,然后根据几何性质计算未知量分类讨论,根据对角线“共中点”的性质直接计算。 1. (2011盘锦考点:二次函数综合题;待定系数法求二次函数解析式。点评:本题主要考查了二次函数的综合,考查了待定系数法求二次函数的解析式解题时,借用了二次函数图象上点的坐标特征这一知识点)如图,二次函数y=ax2+bx的图象经过A(1,1)、B(4,0)两
2、点(1)求这个二次函数解析式;(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标2. (2010陕西难度不大考点:二次函数综合题;待定系数法求二次函数解析式。专题:分类讨论。点评:本题是二次函数的综合题,涉及到二次函数解析式的确定,分类讨论的思想,此题不是很难,但是做题时要考虑周全)在平面直角坐标系中,抛物线A(1,0),B(3,0),C(0,1)三点(1)求该抛物线的表达式;(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标3. (2011阜新考点:二次函数综合题。专题:综合题。点评:本题考
3、查了解二次函数的综合题的方法:先通过二次函数的解析式确定各特殊点的坐标,得到有关线段的长,然后利用几何性质(如三角形面积公式,平行四边形的性质)去确定其他点的坐标)如图,抛物线y=x2+x与x轴相交于A、B两点,顶点为P(1)求点A、B的坐标;(2)在抛物线是否存在点E,使ABP的面积等于ABE的面积,若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形,直接写出所有符合条件的点F的坐标4. (2007玉溪难度不大点评:此题考查了用待定系数法求函数解析式以及函数图象上点的坐标特征,结合图形有利于解答;(3)是一道存
4、在性问题,有一定的开放性,需要先假设点P存在,然后进行验证计算)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=xm与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上。(1) 求m的值及这个二次函数的关系式;(2) P为线段AB上的一个动点(点P与A、B不重合),过P点作x轴的垂线交二次函数图象于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3) D为直线AB与二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,求点P的坐标;若不存在,请说明理由。5. (2011淄博难
5、度不大变式:将“过点M作x轴的垂线与抛物线交于点P”改成“过点M作x轴的垂线于点P”。考点:二次函数综合题;解二元一次方程组;待定系数法求二次函数解析式;勾股定理;平行四边形的性质。专题:计算题。点评:本题主要考查对一次函数的性质,用待定系数法求二次函数的解析式,解二元一次方程组,平行四边形的性质,勾股定理等知识点的理解和掌握,能用待定系数法求二次函数的解析式和得到MD=ND=|2m|是解此题的关键)抛物线y=ax2+bx+c与y轴交于点C(0,2),与直线y=x交于点A(2,2),B(2,2)(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),
6、且MN=,若M点的横坐标为m,过点M作x轴的垂线与抛物线交于点P,过点N作x轴的垂线与抛物线交于点Q以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由6. (2011内江考点:二次函数综合题。专题:综合题。点评:此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握)如图抛物线y=x2mx+n与x轴交于A、B两点,与y轴交于点C(01)且对称抽x=l(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3若存在,求出点
7、D的坐标;若不存在说明理由(使用图1);(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2)7. (2011凉山州考点:二次函数综合题。点评:此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1x2,与y轴交于点C(0,4),其中x1,x2是方程x24x12=0的两个根(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MNBC,交AC于点N,连接CM,当C
8、MN的面积最大时,求点M的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F的坐标,若不存在,请说明理由8. (2011衡阳考点:二次函数综合题。专题:代数几何综合题。点评:本题考查了二次函数的综合运用,求得判别式总大于等于3,而证得;求得点A,代入抛物线解析式得m,由直线AD的斜率与直线PC的斜率相等,而解得;平移后得到的情况,得到M,N的坐标而解得)已知抛物线(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶
9、点为点C,直线y=x1与抛物线交于A、B两点,并与它的对称轴交于点D抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形9. (2010龙岩考点:二次函数综合题;待定系数法求二次函数解析式;线段垂直平分线的性质;等腰三角形的判定;平行四边形的性质。专题:计算题;证明题。点评:解此题的关键是检查对求抛物线的解析式的掌握(即已知抛物线上点的坐标求解析式),能利用点的坐标特点解决几何问题(判断三角形的形状)突破点是利用平行四边形的性质求出P、F 的坐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 平行四边形 存在 问题 精编

链接地址:https://www.31ppt.com/p-4248979.html