二次函数图像信息题.docx
《二次函数图像信息题.docx》由会员分享,可在线阅读,更多相关《二次函数图像信息题.docx(30页珍藏版)》请在三一办公上搜索。
1、 二次函数图表信息题一选择题(共18小题)1已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(2,y1),N(1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()Ay1y2y3By2y1y3Cy3y1y2Dy1y3y22抛物线y=x22x+1与坐标轴交点为()A二个交点B一个交点C无交点D三个交点3已知a0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()ABCD4抛物线y=2x2,y=2x2,共有的性质是()A开口向下B对称轴是y轴C都有最高点Dy随x的增大而增大5如图是二次函数y=ax2+bx+c的图象的一部分,对
2、称轴是直线x=1b24ac; 4a2b+c0;不等式ax2+bx+c0的解集是x;若(2,y1),(5,y2)是抛物线上的两点,则y1y2上述4个判断中,正确的是()ABCD6抛物线y=ax2+bx+c的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图,则以下结论:b24ac0;a+b+c0;ca=2;方程ax2+bx+c2=0有两个相等的实数根其中正确结论的个数为()A1个B2个C3个D4个7已知抛物线y=ax2+bx+c(a0)经过点(1,1)和(1,0)下列结论:ab+c=0b24ac当a0时,抛物线与x轴必有一个交点在点(1,0)的右侧;抛物线的对称
3、轴为x=其中结论正确的个数有()A4个B3个C2个D1个8二次函数y=ax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;4a+c2b;3b+2c0;m(am+b)+ba(m1),其中正确结论的个数是()A4个B3个C2个D1个9如图是二次函数y=ax2+bx+c(a0)图象的一部分,x=1是对称轴,有下列判断:b2a=0;4a2b+c0;ab+c=9a;若(3,y1),(,y2)是抛物线上两点,则y1y2,其中正确的是()ABCD10(2014?天津)已知二次函数y=ax2+bx+c(a0)的图象如图,且关于x的一元二次方程ax2+bx+cm=0没有实数根,有下列结论:b24
4、ac0;abc0;m2其中,正确结论的个数是()A0B1C2D311如图,二次函y=ax2+bx+c(a0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:abc0;a+b=0;4a+2b+c0;若(2,y1),(,y2)是抛物线上的两点,则y1y2,其中说法正确的是()ABCD12已知二次函数y=ax2+bx+c(a0)的图象如图,则下列说法:c=0;该抛物线的对称轴是直线x=1;当x=1时,y=2a;am2+bm+a0(m1)其中正确的个数是()A1B2C3D413二次函数y=ax2+bx+c(a0)图象如图,下列结论:abc0;2a+b=0;当m1时,a+bam2+bm;a
5、b+c0;若ax12+bx1=ax22+bx2,且x1x2,x1+x2=2其中正确的有()ABCD14二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x1时,y的值随x值的增大而增大其中正确的结论有()A1个B2个C3个D4个15已知二次函数y=ax2+bx+c(a0)的图象如图,分析下列四个结论:abc0;b24ac0;3a+c0;(a+c)2b2,其中正确的结论有()A1个B2个C3个D4个16已知二次函数y=ax2+bx+c的图象如图所示下列结论:abc0;2ab0;4a2b+c0;(
6、a+c)2b2其中正确的个数有()A1B2C3D417二次函数y=ax2+bx+c图象如图,下列正确的个数为()bc0;2a3c0;2a+b0;ax2+bx+c=0有两个解x1,x2,当x1x2时,x10,x20;a+b+c0;当x1时,y随x增大而减小A2B3C4D518如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列4个结论:abc0;ba+c;4a+2b+c0;b24ac0其中正确结论的有()ABCD参考答案与试题解析一选择题(共18小题)1(2014?承德二模)已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(2,y1),N(1,y2),K(
7、8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()Ay1y2y3By2y1y3Cy3y1y2Dy1y3y2考点:二次函数图象上点的坐标特征专题:计算题分析:利用A点与B点为抛物线上的对称点得到对称轴为直线x=2,然后根据点M、N、K离对称轴的远近求解解答:解:二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),抛物线开口向上,对称轴为直线x=2,M(2,y1),N(1,y2),K(8,y3),K点离对称轴最远,N点离对称轴最近,y2y1y3故选B点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式2(2014宁波一模)抛物线y=x
8、22x+1与坐标轴交点为()A二个交点B一个交点C无交点D三个交点考点:抛物线与x轴的交点菁优网版权所有分析:因为x22x+1=0中,=(2)2411=0,有两个相等的实数根,图象与x轴有一个交点,再加当y=0时的点即可解答:解:当x=0时y=1,当y=0时,x=1抛物线y=x22x+1与坐标轴交点有两个故选:A点评:解答此题要明确抛物线y=x22x+1的图象与x轴交点的个数与方程x22x+1=0解的个数有关,还得考虑与y轴相交3(2014宁夏)已知a0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()ABCD考点:二次函数的图象;正比例函数的图象菁优网版权所有专题:数形结合分析
9、:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较)解答:解:A、函数y=ax中,a0,y=ax2中,a0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a0,y=ax2中,a0,故B错误;C、函数y=ax中,a0,y=ax2中,a0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a0,y=ax2中,a0,故D错误故选:C点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图
10、象的大致形状4(2014毕节地区)抛物线y=2x2,y=2x2,共有的性质是()A开口向下B对称轴是y轴C都有最高点Dy随x的增大而增大考点:二次函数的性质菁优网版权所有分析:根据二次函数的性质解题解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点故选:B点评:考查二次函数顶点式y=a(xh)2+k的性质二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x时,y随x的增大而减小;x时,y随x的
11、增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x时,y随x的增大而增大;x时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点5(2014达州)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1b24ac; 4a2b+c0;不等式ax2+bx+c0的解集是x;若(2,y1),(5,y2)是抛物线上的两点,则y1y2上述4个判断中,正确的是()ABCD考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组)菁优网版权所有专题:数形结合分析:根据抛物线与x轴有两个交点可得b
12、24ac0,进而判断正确;根据题中条件不能得出x=2时y的正负,因而不能得出正确;如果设ax2+bx+c=0的两根为、(),那么根据图象可知不等式ax2+bx+c0的解集是x或x,由此判断错误;先根据抛物线的对称性可知x=2与x=4时的函数值相等,再根据二次函数的增减性即可判断正确解答:解:抛物线与x轴有两个交点,b24ac0,b24ac,故正确; x=2时,y=4a2b+c,而题中条件不能判断此时y的正负,即4a2b+c可能大于0,可能等于0,也可能小于0,故错误;如果设ax2+bx+c=0的两根为、(),那么根据图象可知不等式ax2+bx+c0的解集是x或x,故错误;二次函数y=ax2+b
13、x+c的对称轴是直线x=1,x=2与x=4时的函数值相等,45,当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,y1y2,故正确故选:B点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用6(2014孝感)抛物线y=ax2+bx+c的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图,则以下结论:b24ac0;a+b+c0;ca=2;方程ax2+bx+c2=0有两个相等的实数根其中正确结论的个数为()A1个B2个C3个D4个考点:二次函数图象与系数的关系;抛物线与x轴的
14、交点菁优网版权所有专题:数形结合分析:由抛物线与x轴有两个交点得到b24ac0;有抛物线顶点坐标得到抛物线的对称轴为直线x=1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y0,则a+b+c0;由抛物线的顶点为D(1,2)得ab+c=2,由抛物线的对称轴为直线x=1得b=2a,所以ca=2;根据二次函数的最大值问题,当x=1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,所以说方程ax2+bx+c2=0有两个相等的实数根解答:解:抛物线与x轴有两个交点,b24ac0,所以错误;顶点为D(1,2),抛物线的对称轴为直线x=1,抛物
15、线与x轴的一个交点A在点(3,0)和(2,0)之间,抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,当x=1时,y0,a+b+c0,所以正确;抛物线的顶点为D(1,2),ab+c=2,抛物线的对称轴为直线x=1,b=2a,a2a+c=2,即ca=2,所以正确;当x=1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,方程ax2+bx+c2=0有两个相等的实数根,所以正确故选:C点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与
16、x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点7(2014十堰)已知抛物线y=ax2+bx+c(a0)经过点(1,1)和(1,0)下列结论:ab+c=0;b24ac;当a0时,抛物线与x轴必有一个交点在点(1,0)的右侧;抛物线的对称轴为x=其中结论正确的个数有()A4个B3个C2个D1个考点:二次函数图象与系数的关系菁优网版权所有专题:常规题型分析:将点(1,0)代入y=ax2+bx+c,即可判断正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由得ab+c=0,两式相加,得a+c=,两式相减,得b=由b24ac=4a(a)=2
17、a+4a2=(2a)2,当a=时,b24ac=0,即可判断错误;由b24ac=(2a)20,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,根据一元二次方程根与系数的关系可得1x=1,即x=1,再由a0得出x1,即可判断正确;根据抛物线的对称轴公式为x=,将b=代入即可判断正确解答:解:抛物线y=ax2+bx+c(a0)经过点(1,0),ab+c=0,故正确;抛物线y=ax2+bx+c(a0)经过点(1,1),a+b+c=1,又ab+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=b24ac=4a(a)=2a+4a2=(2a)2,当2a=0,
18、即a=时,b24ac=0,故错误;当a0时,b24ac=(2a)20,抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则1x=1,即x=1,a0,0,x=11,即抛物线与x轴必有一个交点在点(1,0)的右侧,故正确;抛物线的对称轴为x=,故正确故选:B点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中8(2014资阳)二次函数y=ax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;4a+c2b;3b+2c0;m(am+b)+ba(m1),其中
19、正确结论的个数是()A4个B3个C2个D1个考点:二次函数图象与系数的关系菁优网版权所有专题:数形结合分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断解答:解:抛物线和x轴有两个交点,b24ac0,4acb20,正确;对称轴是直线x=1,和x轴的一个交点在点(0,0)和点(1,0)之间,抛物线和x轴的另一个交点在(3,0)和(2,0)之间,把(2,0)代入抛物线得:y=4a2b+c0,4a+c2b,错误;把(1,0)代入抛物线得:y=a+b+c0,2a+2b+2c0,b=2a,3b+2c0,正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把(m,0)(m1)代
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 图像 信息
链接地址:https://www.31ppt.com/p-4248966.html