全等三角形总练习情况总结复习资料计划.doc
《全等三角形总练习情况总结复习资料计划.doc》由会员分享,可在线阅读,更多相关《全等三角形总练习情况总结复习资料计划.doc(13页珍藏版)》请在三一办公上搜索。
1、专题总复习(一) 全等三角形、轴对称一、复习目标:1、理解全等三角形概念及全等多边形的概念.2、掌握并会运用三角形全等的判定和性质,能应用三角形的全等解决一些实际问题.3、通过复习,能够应用所学知识解决一些实际问题,提高学生对空间构造的思考能力.二、重难点分析:1、全等三角形的性质与判定;2、全等三角形的性质、判定与解决实际生活问题.三、知识点梳理:知识点一:全等三角形的概念能够完全重合的两个三角形叫全等三角形.知识点二:全等三角形的性质. (1)全等三角形的对应边相等. (2)全等三角形的对应角相等.知识点三:判定两个三角形全等的方法. (1)SSS (2)SAS (3)ASA (4)AAS
2、 (5)HL(只对直角三形来说)知识点四:寻找全等三形对应边、对应角的规律.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.有公共边的,公共边一定是对应边.有公共角的,公共角一定是对应角.有对顶角的,对顶角是对应角.全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).知识点五:找全等三角形的方法.(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.(3)可以从已知条件和结论
3、综合考虑,看它们能否一同确定哪两个三角形全等.(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.知识点六:角平分线的性质及判定.(1)角平分线的性质:角平分线上的点到角两边的距离相等.(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.(3)三角形三个内角平分线的性质:三角形三条角平分线交于一点,且到三角形三边距离相等.知识点七:证明线段相等的方法.(重点)(1)中点性质(中位线、中线、垂直平分线)(2)证明两个三角形全等,则对应边相等(3)借助中间线段相等.知识点八:证明角相等的方法.(重点)(1)对顶角相等;(2)同角或等角的余角(或补角)相等;(3)两直线
4、平行,内错角相等、同位角相等;(4)角平分线的定义;(5)垂直的定义;(6)全等三角形的对应角相等;(7)三角形的外角等于与它不相邻的两内角和.知识点九:全等三角形中几个重要的结论.(1)全等三角形对应角的平分线相等;(2)全等三角形对应边上的中线相等;(3)全等三角形对应边上的高相等.知识点十:三角形中常见辅助线的作法.(重难点)(1)延长中线构造全等三角形(倍长线段法);(2)引平行线构造全等三角形;(3)作垂直线段(或高);(4)取长补短法(截取法).四、例题精讲:考点一:考查全等三角形的性质定理及判定定理.类型1 下列三角形全等的判定中,只适用于直角三角形的是( )A、SSS B、SA
5、S C、ASA D、HL类型2 下列条件中,不能判定两个直角三角形全等的是( )A、一锐角和一直角边对应用相等 B、两直角边对应相等C、两锐角对应相等 D、斜边、直角边对应相等.类型3 如图,AC和BD相交于点O,BO=DO,AO=CO,则图中的全等三角形共有多少对( )A、1对 B、2对 C、3对 D、4对考点二:考查全等三角形与垂直平分线的应用.类型1 在中,的垂直平分线交于点,交于,的垂直平分线交于点,交于,求证:.类型2 如图所示,在中,平分,.(1)求的度数;(2)求证:.考点三:全等三角形与等边三角形的综合运用.类型1 已知和为等边三角形,点在同一直线上,如图1所示.(1)求证:;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 练习 情况 总结 复习资料 计划
链接地址:https://www.31ppt.com/p-4246509.html