《人工智能专业共建方案.doc》由会员分享,可在线阅读,更多相关《人工智能专业共建方案.doc(9页珍藏版)》请在三一办公上搜索。
1、中软国际专业共建方案人工智能应用北京中软国际教育科技股份有限公司V1.02018年1月8日目录1.行业背景31.1.人工智能人才培养31.2.就业岗位31.3.中软国际与人工智能42.总体设计42.1.共建目标42.2.合作内容43.人才培养方案53.1.人才培养目标53.2.毕业要求及知识能力分解53.3.课程路线63.4.核心和特色课程64.联合人才培养服务74.1.2.5+0.5+1培养模式74.2.主干课程实施清单85.教学资源建设95.1.课件与案例95.2.人工智能虚拟实验系统95.3.双师队伍建设91. 行业背景1.1. 人工智能人才培养2017年7月国务院印发的新一代人工智能发
2、展规划中,明确分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。随着人工智能上升为国家战略,顶层设计框架搭建完成,产业发展有望持续提速,带来投资新机遇。要实现上述目标,人工智能人才培养至关重要。自2004年起,经国家教育部正式批准设立“智能科学与技术”本科专业的高校已达36个。但是由于这一专业目前仍然不是一级学科,在资源、规模等方面远远不能满足产业的人才需求。规划提出要重点建设人工智能学科:完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士
3、招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。目前,人工智能领域最为缺乏的高端科学家和研究人员,这类人才一般都需要博士学历,并具有多年的科研经验。但是,本科生的培养也至关重要。一方面,企业仍然需要招聘较大数量的工程型、应用型本科生,配合研究人员来从事人工智能应用领域的系统设计、开发、运维,并将科研成果应用到具体的行业中;另一方面,本科生也是高端人才的直接来源。因此,在本科层面开展人
4、工智能人才培养,同样具有重要的意义和可行性。1.2. 就业岗位目前,与人工智能相关的适合本科毕业生的岗位及对应能力要求主要如下:l 机器学习/数据挖掘工程师n 具备良好的数学、统计、计算机知识n 熟悉常用的机器学习和数据挖掘算法n 熟悉主流机器学习、深度学习(例如TensorFlow, SparkML等)框架开发n 熟悉主流的数据仓库和商务智能分析平台和工具n 良好的数据敏感度,能从海量数据提炼核心结果;具有一定的数据分析、挖掘、清洗和建模的经验n 熟练掌握Python、Java等编程语言l 人工智能应用开发工程师n 熟悉Java、Python或Node.js Web服务端开发技术、框架n 熟
5、悉H5、Android或iOS智能客户端开发技术n 能够设计与实现客户端与服务端的交互应用程序n 熟悉典型的关系型和非关系型数据库的使用和开发l 人工智能平台/大数据运维工程师。n 负责人工智能/大数据硬件、网络、软件、平台及应用系统的搭建、管理、维护、监控等n 熟悉Linux系统管理和维护,熟悉Shell编程n 熟悉关系型和非关系型数据库系统的配置、管理、维护及优化n 熟悉Hadoop等大数据平台的规划、安装、配置、管理、监控、维护等工作n 熟悉虚拟化系统的规划、配置和管理l 数据清洗员n 根据业务需求编写数据清洗脚本;按照模板输出清洗干净的数据;校验数据n 熟悉Java、R或Python之
6、一n 熟悉MySQL、Oracle或SQL Server关系型数据库之一;熟悉某种非结构化数据库n 熟练使用Excel等数据统计分析工具1.3. 中软国际与人工智能中软国际是中软集团的旗舰企业,2000年成立,2003年于香港创业板上市,并于2008年转入主板(股票代码HK354),是中国领先的应用软件和解决方案供应商。2016年软件和服务性收入超过60亿元人民币,员工超过5万人。中软国际总部位于北京,在美国、日本、香港以及中国大陆20多个主要城市设有子公司或办事处。中软国际是国内软件和服务外包的领军企业,是华为在国内最大的软件外包供应商,同时与微软、IBM、阿里巴巴、腾讯等公司建立长期的、规
7、模化的外包业务合作;中软国际同时也是烟草、审计、质检、社保、药监、金融、电子政务等行业信息化解决方案的主要供应商。早在2003年,中软国际就开始在烟草、审计等行业大规模应用数据仓库、商务智能分析、数据挖掘,大幅提高了上述行业和政务系统的效率和管理水平。2015年,中软国际与华为合作发布了金融大数据解决方案,实现精准营销和实施风控。迄今为止已为数十家金融机构提供了智慧化的金融服务。2017年7月,中软国际与华为联合发布“工业诊断云”和“智能制造服务”,将人工智能和智慧服务引入制造业。2017年12月,中软国际与百度签署战略合作协议,双方将发挥各自行业优势,在人工智能技术赋能、行业拓展、技术创新、
8、生态共享等方面展开全面合作,促进人工智能与软件信息服务领域的深入融合发展,推动各行业的利用人工智能技术实现智能升级;围绕烟草、政务、轨道交通、金融等行业,共同打造行业联合解决方案。2. 总体设计2.1. 共建目标l 探索出人工智能领域人才培养的有效模式l 加速培养合格乃至优秀的人工智能应用型人才,满足行业的人才需求,扩大院校专业知名度2.2. 合作内容中软国际与院校共建“人工智能应用”专业,将从以下几个方面展开合作:(1) 联合人才培养服务l 共同设计制定人才培养方案、课程体系和教学大纲l 协助院校招生及迎新l 参与入学教育和行业认知实习l 参与小学期实训l 课程/学分置换l 为期一个学期的集
9、中式实训l 创新创业指导l 毕业设计指导l 企业实习和就业(2) 教学资源建设l 课件/案例库l 人工智能虚拟实验系统 l 师资培训中软国际人工智能应用专业共建特色如下:l 在人才培养合作上,拥有从学生入学到就业的全程联合培养机制;校内联合培养与中软国际基地集中训练相结合,充分发挥校企双方各自的资源优势l 强调人工智能在行业中的具体应用,重点培养应用型人才而不是算法、理论研究型人才;同时兼顾考研深造的要求l 在提供人才培养服务的同时,也提供较为完善的课件、案例库、实验系统、师资培训等,服务于本专业的建设和发展3. 人才培养方案3.1. 人才培养目标“人工智能应用”专业培养德、智、体、美全面发展
10、,掌握人工智能基础知识、理论和技术,并能灵活应用到具体行业或场景中的工程型、应用型人才。包括:l 掌握相关的数学、统计学、计算机科学、软件工程等学科基础知识l 掌握数据挖掘、机器学习、深度学习等专业知识l 掌握人工智能应用系统分析、设计、实现及运维的方法、技术和工具l 能够结合移动互联、大数据、物联网等技术,将人工智能应用在实际生产、生活环境中3.2. 毕业要求及知识能力分解下表列出了本专业学生应具备的知识、能力和素质,以及对应的主要培养课程类别项目要求对应课程知识体系数理基础掌握数据科学领域必要的数学工具高等数学线性代数概率论与数理统计最优化方法离散数学IT基础掌握数据科学领域必要的计算机和
11、软件工具面向对象程序设计(Java)Python程序设计数据结构与算法数据库原理计算机网络操作系统人工智能理论掌握数据科学领域必要的理论知识体系人工智能概论机器学习深度学习数据仓库与数据挖掘专业技能公共技能熟悉人工智能应用编程工具面向对象程序设计(Java)Python程序设计科学计算与统计分析熟悉数据存储、计算和管理平台与工具数据库管理与开发分布式计算系统智能应用系统运维技术掌握人工智能应用的分析、设计、实现及运维技术智能应用系统设计与开发数据可视化计算机视觉语音识别自然语言处理R语言多元统计分析智能机器人推荐系统项目经验产品、项目过程管理熟悉人工智能产品或应用的生命周期,包括阶段划分、人员
12、分工、岗位协作等专业综合实训人工智能行业应用实训企业实习毕业设计行业经验了解至少一个行业的行业背景、业务模式、市场特点,以及人工智能在该行业中的应用综合素质职业素质良好的文档写作、演示汇报、商务沟通能力人工智能行业应用实训企业实习毕业设计学习能力快速学习,主动学习创新意识在日常工作和学习中的微创新能力,人工智能落地应用敏感度3.3. 课程路线下图列出了本专业主干课程的学习路线:3.4. 核心和特色课程l 人工智能概论。作为本专业概论课程,向学生全面介绍包括人工智能、云计算、大数据、移动互联、物联网在内的相关的概念、技术及应用,尤其是人工智能在产业中的应用场景。使学生建立对本专业相关知识、技术及
13、发展前景的初步认识,作为后续深化课程的引导。l Python程序设计。介绍Python语法和语言特性l 科学计算与统计分析。主要使用Python语言及numpy、scipy、pandas、matplotlib等工具包,实现机器学习中常见的线性代数、微积分、概率、统计、优化等数学问题,为机器学习和深度学习打下坚实的数学基础l 数据库应用。介绍典型的结构化数据库(Oralce/MySQL)和非结构化数据库(Mongodb/Redis)的基本概念、安装配置、管理维护、数据访问和开发(Java、Python)等内容 l 分布式计算系统。介绍Hadoop分布式计算系统的基本概念、安装配置、分布式编程模型
14、(Map/Reduce),分布式文件系统(HDFS),以及相关的调度、监控和维护工具,使学生建立对分布式计算系统的基本认识,掌握初级的分布式应用设计和实现方法,为后续深度课程奠定理论和实践基础l 机器学习。以Python为主介绍监督与非监督学习;线性回归及其实现;逻辑回归及其实现;贝叶斯分类器及其实现;支持向量机;神经网络;决策树;聚类分析;降维算法;推荐算法;算法评估方法;训练样本的质量和选择考虑。l 深度学习。介绍深度神经网络的设计要点,包括网络结构、权重初始化、梯度下降更新策略、Batch Normalization、Dropout等影响计算效能的因素;卷积神经网络的概念及其分别在Pyt
15、hon及TensorFlow中的实现;循环神经网络的概念和基本实现;迁移学习、强化学些、GAN等。l 数据仓库与数据挖掘。介绍ETL方法与工具、数据仓库构建、多维数据集、维度/度量值/关联、数据挖掘算法、典型BI和数据挖掘工具使用等。l 数据可视化。介绍各种数据可视化的理论基础,以及平台和开发工具的设计和使用,包括Excel, 报表服务,Chart.js, D3.js, Tableau等。通过本课程学习,学生能够将数据处理的结果以高效、灵活和友好的方式呈现l 智能应用系统设计与开发。为人工智能后端算法库设计、实现服务平台,使之能对外提供服务接口;开发智能终端应用程序,使之能够与服务端接口交互。
16、l 智能应用系统运维管理。基于Python的自动化运维管理,以及基于Hadoop的运维管理l 计算机视觉。OpenCV图像处理库、图像识别、人脸识别等4. 联合人才培养服务4.1. 2.5+0.5+1培养模式校企专业共建联合人才培养采用2.5 + 0.5 + 1的模式。即:l 第1-4学期(2学年)课程在学校完成,主要由学校师资授课;中软国际在特定课程/实践环节派遣企业师资到学校授课。这些环节包括:入学迎新、新生入学教育、小学期课程设计实训等l 第5学期(0.5学年)课程在学校完成,主要由学校教师授课,辅以中软国际企业讲师借助智慧教育云平台线上线下结合授课;对于个别专业技术课程,由中软国际外派
17、企业讲师到学校授课l 第6学期(0.5学年)课程在中软国际实训基地或在校内集中完成,由中软国际企业讲师为主授课,少数课程可由院校教师负责。这部分课程均为专业特色课程,并与用人单位的需求和要求挂钩l 第7、8学期(1学年),中软国际推荐学生进入各用人单位进行带薪顶岗实习,同时指导学生完成毕业设计4.2. 主干课程实施清单下表列出了本专业主干课程的名称、课时、上课地点及负责方:课程名称学期课时地点负责备注新生入学教育及认知实习18校内中软讲座、会谈人工智能概论132校内院校面向对象程序设计(Java)264校内院校面向对象程序设计(Java)课设21周校内中软小学期连续数据结构与算法364校内院校
18、操作系统332校内院校Python程序设计464校内院校Python程序设计课程设计42周校内中软小学期连续数据库原理464校内院校计算机网络448校内院校数据库应用开发532校内院校科学计算与统计分析532校内院校专业必修课机器学习548校内院校机器学习课程设计52周校内中软分布式计算系统系统548校内院校数据仓库与数据挖掘632中软/校内中软深度学习632中软/校内中软智能应用系统设计与开发664中软/校内中软智能应用系统运维管理648中软/校内中软数据可视化632中软/校内中软计算机视觉632中软/校内中软专业选修课(选2门)语音识别632中软/校内院校自然语言处理632中软/校内院校R
19、语言多元统计分析632中软/校内中软智能机器人632中软/校内中软推荐系统632中软/校内中软专业综合实训64周中软/校内中软专业实践人工智能行业应用实训64周中软/校内中软职业素质教育616中软中软笔试面试指导616中软中软企业实习7、816周用人单位毕业设计和毕业论文7、8中软中软5. 教学资源建设5.1. 课件与案例中软国际提供本专业主要的专业必修课、选修课的课件(含PPT、讲义、案例、视频)。中软国际提供主要实践环节的实训项目,包括课程设计实训项目、专业综合实训项目以及行业应用实训项目5.2. 人工智能虚拟实验系统中软国际提供下列3个虚拟实验系统(以虚拟机形式提供),供本专业学生实验、
20、实训名称实验环境实验内容大数据开发和运维实验系统基础平台:Linux、Eclipse、MySQL基础环境:HDFS、MapReduce、HBase数据采集软件包:Flume、Sqoop实时及流式处理:Spark搜索引擎:Lucene、SOLR图数据库:neo4j、titan数据挖掘:Mahout机器学习:SparkML支持下列技术领域累计不少于100个实验:Hadoop系统搭建数据存储M/R和Yarn实时/流式计算数据采集及处理搜索引擎图数据库数据可视化机器学习机器学习和深度学习实验系统基础平台:Linux、Python、Visual Studio Code数值计算库:NumPy、SciPy、
21、Pandas机器学习库:Sklearn、TensorFlow支持下列技术领域累计不少于100个实验:Python编程开发Python数据访问Python科学计算典型机器学习算法多层神经网络CNN与图像分类TensorFlow对机器学习与深度神经网络的实现商务智能与数据挖掘实验系统基础平台:Linux、Java、Python、R、MySQL、Mongodb、Redis数据分析:Mondrain、Kylin数据展现:D3.js、Superset支持下列技术领域累计不少于100个实验:MySQL使用与开发(JS、Python)Mongodb使用与开发(JS、Python)Redis使用与开发(JS、Python)OLAPSuperset数据查询与展现D3.js数据展现5.3. 双师队伍建设中软国际鼓励院校青年教师全程参与校企专业共建;接收院校青年教师在中软国际顶岗实践;举办高新技术师资培训(大数据、机器学习、深度学习等);鼓励院校讲师与企业工程师联合进行课件、案例研发,可申报精品课程。中软国际也将为本专业学生提供实习、毕设的企业导师。
链接地址:https://www.31ppt.com/p-4245347.html