高考数学考前15天专题突破系列——立体几何解题方法技巧.doc
《高考数学考前15天专题突破系列——立体几何解题方法技巧.doc》由会员分享,可在线阅读,更多相关《高考数学考前15天专题突破系列——立体几何解题方法技巧.doc(7页珍藏版)》请在三一办公上搜索。
1、2012年高考数学考前15天专题突破系列立体几何解题方法技巧一、内容提要:立体几何需要我们去解决的问题概括起来就是三个方面,证明位置关系、求距离和求角;具体内容见下表:高&考%资(源#网 wxc高&考%资(源#网 wxc立体几何提 要主 要 内 容重 点 内 容来源:高&考%资(源#网 wxc位置关系 两条异面直线相互垂直、直线与平面平行、直线与平面斜交、直线与平面垂直、两个平面斜交、两个平面相互垂直两条异面直线相互垂直、直线与平面平行、直线与平面垂直、两个平面相互垂直距 离两条异面直线的距离、点到平面的距离、直线到平面的距离、两个平面的距离两条异面直线的距离、点到平面的距离角 度两条异面直线
2、所成的角、直线和平面所成的角、二面角两条异面直线所成的角、直线和平面所成的角、二面角二、主要解题方法:(一)位置关系1、两条异面直线相互垂直 证明方法:证明两条异面直线所成角为90;证明两条异面直线的方向量相互垂直2、直线和平面相互平行证明方法:证明直线和这个平面内的一条直线相互平行;证明这条直线的方向量和这个平面内的一个向量相互平行;证明这条直线的方向量和这个平面的法向量相互垂直。3、直线和平面垂直证明方法:证明直线和平面内两条相交直线都垂直,证明直线的方向量与这个平面内不共线的两个向量都垂直;证明直线的方向量与这个平面的法向量相互平行。4、平面和平面相互垂直证明方法:证明这两个平面所成二面
3、角的平面角为90;证明一个平面内的一条直线垂直于另外一个平面;证明两个平面的法向量相互垂直。(二)求距离求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。1、两条异面直线的距离求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度,线段长度的求法也可以用向量来帮助解决,求线段AB的长度,可以利用来帮助解决,但是前提条件是我们要知道的模和每两个向量所成的角。利用公式(其中A、B分别为两条异面直线上的一点,为这两条异面直线的法向量)2、点到平面的距离求法:“一找二证三求”,三步都必须要清楚地写
4、出来。等体积法。向量法,利用公式(其中A为已知点,B为这个平面内的任意一点,这个平面的法向量)(三)求角1、两条异面直线所成的角求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。2、直线和平面所成的角求法:“一找二证三求”,三步都必须要清楚地写出来。向量法,先求直线的方向量于平面的法向量所成的角,那么所要求的角为或3、平面与平面所成的角求法:“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 考前 15 专题 突破 系列 立体几何 解题 方法 技巧
链接地址:https://www.31ppt.com/p-4239241.html