高中数学空间几何、立体几何问题考点题型归纳分析、绝.doc
《高中数学空间几何、立体几何问题考点题型归纳分析、绝.doc》由会员分享,可在线阅读,更多相关《高中数学空间几何、立体几何问题考点题型归纳分析、绝.doc(16页珍藏版)》请在三一办公上搜索。
1、 立体几何大题题型训练题型一、空间的平行与垂直证明1、在直三棱柱ABCA1B1C1中,AC3,BC4,AA14,点D是AB的中点, (I)求证:ACBC1; (II)求证:AC 1/平面CDB1;2、已知正六棱柱的所有棱长均为,为的中点. ()求证:平面; ()求证:平面平面; ()求异面直线与所成角的余弦值.3、(2007武汉3月)如图所示,四棱锥PABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。(1)求证:BM平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦。题型二 求空间距离考点1 点到平
2、面的距离1、(福建卷理)如图,正三棱柱的所有棱长都为,为中点ABCD()求证:平面;()求二面角的大小;()求点到平面的距离2、2010江西 如图BCD与MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,。()求点A到平面MBC的距离;()求平面ACM与平面BCD所成二面角的正弦值。考点2 直线到平面的距离1、已知斜三棱柱,在底面上的射影恰为的中点,又知。(I)求证:平面;(II)求到平面的距离;(III)求二面角的大小。题型三 空间角的计算考点1 求异面直线所成角1、(北京卷)如图,在中,斜边可以通过以直线为轴旋转得到,且二面角的直二面角是的 中点(I)求证:平面平面;(I
3、I)求异面直线与所成角的大小2、(广东卷)如图所示,AF、DE分别是O、O1的直径.AD与两圆所在的平面均垂直,AD8,BC是O的直径,ABAC6,OE/AD.()求二面角BADF的大小;()求直线BD与EF所成的角考点2 直线和平面所成的角1、(全国卷理)四棱锥中,底面为平行四边形,侧面底面已知,()证明;()求直线与平面所成角的大小2、如图,在正三棱柱中, , 点是的中点,点在上,且.()证明:平面平面;()求直线和平面所成角的正弦值. 考点3 二面角1、(全国理19题)如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD底面ABCD,E、F分别是AB、SC的中点。ABCDPEF第
4、38题图第39题图()求证:EF平面SAD;()设SD = 2CD,求二面角AEFD的大小;2、(2010陕西)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点()证明:PC平面BEF;()求平面BEF与平面BAP夹角的大小。 题型一1、解法一:(I)直三棱柱ABCA1B1C1,底面三边长AC=3,BC=4AB=5, ACBC,且BC1在平面ABC内的射影为BC, ACBC1;(II)设CB1与C1B的交点为E,连结DE, D是AB的中点,E是BC1的中点,ABCA1B1C1Exyz DE/AC1, DE平面CDB1,
5、AC1平面CDB1, AC1/平面CDB1;解法二:直三棱柱ABCA1B1C1底面三边长AC3,BC4,AB5,AC、BC、C1C两两垂直,如图,以C为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(1)(3,0,0),(0,4,0),0,ACBC1.(2)设CB1与C1B的交战为E,则E(0,2,2).(,0,2),(3,0,4),DEAC1.2、 证明:()因为AFBE,AF平面,所以AF平面,xyz同理可证,平面,所以,平面平面又平面,所以平面 ()
6、因为底面是正六边形,所以,又底面,所以,因为,所以平面,又平面,所以平面平面 ()由于底面是正六边形,所以.如图,建立如图所示的空间直角坐标系.则.则,从而两异面直线与所成角的余弦值为.16. 已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=,A为PB边上一点,且PA=1,将PAD沿AD折起,使面PAD面ABCD(如图2)。(1)证明:平面PADPCD;(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分;(3)在M满足()的情况下,判断直线AM是否平行面PCD.(I)证明:依题意知: (II)由(I)知平面ABCD 平面PAB平面ABCD. 在PB上取一点M,作M
7、NAB,则MN平面ABCD,设MN=h则 要使即M为PB的中点. (III)以A为原点,AD、AB、AP所在直线为x,y,z轴,建立如图所示的空间直角坐标系则A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,)由(I)知平面,则的法向量。又为等腰因为所以AM与平面PCD不平行. 17. 如图,四棱锥FABCD的底面ABCD是菱形,其对角线AC=2,BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2.(I)求二面角BAFD的大小;(II)求四棱锥EABCD与四棱锥FABCD公共部分的体积.本小题主要考查直线与直线、直线与平面、平面与平面
8、的位置关系、相交平面所成二面角以及空间几何体的体积计算等知识,考查空间想象能力和推理论证能力、利用综合法或向量法解决立体几何问题的能力。本小题满分13分。解:(I)(综合法)连接AC、BD交于菱形的中心O,过O作OGAF,G为垂足。连接BG、DG。由BDAC,BDCF得BD平面ACF,故BDAF。 于是AF平面BGD,所以BGAF,DGAF,BGD为二面角BAFD 的平面角。由, ,得, 由,得(向量法)以A为坐标原点,、方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图)设平面ABF的法向量,则由得令,得,同理,可求得平面ADF的法向量。 由知,平面ABF与平面ADF垂直,二面角B-
9、AF-D的大小等于。(II)连EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD。过H作HP平面ABCD,P为垂足。因为EA平面ABCD,FC平面ABCD,所以平面ACFE平面ABCD,从而由得。又因为 故四棱锥H-ABCD的体积18. 如图,四棱锥SABCD的底面是正方形,SD平面ABCD,SD=2a,点E是SD上的点,且()求证:对任意的,都有()设二面角CAED的大小为,直线BE与平面ABCD所成的角为,若,求的值 18.()证法1:如图1,连接BE、BD,由地面ABCD是正方形可得ACBD。 SD平面ABCD,BD是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 空间 几何 立体几何 问题 考点 题型 归纳 分析
链接地址:https://www.31ppt.com/p-4238442.html