电磁感应动量定理的应用.doc
《电磁感应动量定理的应用.doc》由会员分享,可在线阅读,更多相关《电磁感应动量定理的应用.doc(6页珍藏版)》请在三一办公上搜索。
1、电磁感应中动量定理的运用动量定律IP。设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F为变力,但其冲量可用它对时间的平均值进行计算,即I,而BL(为电流对时间的平均值)故有:BL=mv2mv1 .而t=q ,故有q=理论上电量的求法:q=It。 这种方法的依据是电流的定义式I=q/t该式的研究对象是通电导体的某一截面,若在t时间内流过该截面的电量为q,则流过该切面的电流为Iq/t,显然,这个电流应为对时间的平均值,因此该式应写为= q/t ,变形后可以得qt,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求
2、解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=,显然该感应电动势也为对其时间的平均值,再由(R为回路中的总电阻)可以得到。综上可得q。若B不变,则q电量q与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法中相关物理量的关系。 第二:方法中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题
3、型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂 ,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例: (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量
4、定理,对该过程列式如下:mgtBLt=mv 0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量IN;其二是即便考虑了IN,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(aL)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场
5、后,速度为v(vv0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量相同,故有q0=q=/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v,则有: 线框
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁感应 动量 定理 应用
链接地址:https://www.31ppt.com/p-4237171.html