概率在生活中的应用.doc
《概率在生活中的应用.doc》由会员分享,可在线阅读,更多相关《概率在生活中的应用.doc(8页珍藏版)》请在三一办公上搜索。
1、概率在生活中的应用摘要:概率论与数理统计是数学的一门基础课,是研究随机现象统计规律的一门数学分支学科。随着时代的进步以及科学的发展,数学在生活中的应用越来越广,可以说生活中到处充满了数学的影子。而概率作为数学的一个及其重要部分,跟人们的日常生活、生产实践活动紧密相连,在各领域的应用也相当广泛,例如:自然科学、社会科学、天气预报、工商管理、生物学、计算机与通信等领域。与此同时,概率知识逐渐应用到各个学科中,例如在遗传学、信息学、生物学等诸多学科中得到广泛应用。在人们生活中,概率的应用也广泛存在,如在赌博、福利彩票、工业产品抽样调查、地震预告、经济预算也涉及到数学科中的概率知识。由此可见,概率的应
2、用非常广泛。关键字:概率 社会生活 随机现象一、概率论的发展简介(一)概率论的起源概率论是一门研究随机现象的数量规律学科。它起源于对赌博问题的研究。早在16世纪,意大利学者卡丹与塔塔里亚等人就已从数学角度研究过赌博问题。他们的研究除了赌博外还与当时的人口、保险业等有关,但由于卡丹等人的思想未引起重视,概率概念的要旨也不明确,于是很快被人淡忘了。17世纪中叶,欧洲地区的贵族们盛行掷骰子游戏。法国的德梅尔(De Mere)在掷骰子的游戏时遇到一个问题。如他发现掷一枚骰子4次至少出现一次6点是有利。而掷一双骰子24次至少出现一次2个6是不利的。他带着这个疑问向当时的法国数学家帕斯卡(Pascal)请
3、教,帕斯卡接受他的问题,并与费马(Fermat)一起研究,讨论。帕斯卡与费马用各自不同的方法解决了这个问题。虽然他们在解答中没有明确定义概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢得情况数与所有可能情况数的比,这实际上就是概率,所以概率的发展被认为是从帕斯卡与费马开始的。(二)现代概率论在实践中曲折发展在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及其基本性质。后来由于诸多社会问题、工程技术问题,如:人口统计、保险理论、天文观测、产品检验和质量控制等,这些问题促进了概率论的发展。但是,随着概率论各个领域获得众多成果,及概率论在其他基础学科和工程技术上的应用,拉普拉斯给
4、出的概率定义的局限性很快暴露出来,甚至无法适用于一般的随机现象。因为19世纪的分析没有严格化,所以以其为研究工具的概率论的严格化便成了空中楼阁。虽然后来分析的基础严格化了,但是测度论尚未发明。因此,20世纪前的概率论缺乏数学的严密性,庞加莱(J.H.Poincare,1854-1912)也不能把概率论演绎成逻辑上严密完美的学科。“贝特朗悖论”以及概率论在物理、生物等领域的应用需要对概率论的概念、原理做出解释。这些问题促使人们思考概率论的基础问题及概率论所依赖的数学技术问题。1900年,希尔伯特(D.Hilbert,1862-1943)在巴黎国际数学家大会上所作报告中指出把概率论公理化。很快该问
5、题就成为当时数学界乃至整个自然科学界迫切需要结局的问题之一。最早对概率论严格化进行尝试的是俄罗斯数学家伯恩斯坦(C.H.Bernstein,1880-1968)和奥地利数学家米泽斯(R.vonMises,1883-1953)。因此,到20世纪初,概率论的一些基本概念,如:概率等没有明确的定义,概率论作为一个数学分支,缺乏严格的理论基础。1917年伯恩斯坦发表了题为“论概率论的公理化基础”的论文,随后他仍致力于研究概率论公理化。1927年他的概率论第一版问世,最后一个版本即第四版出版于1946年。伯恩斯坦在书中给出了详细的概率论公理体系。(三)概率论的理论基础概率论的第一本专著是1713年问世的
6、雅各贝努利的推测术。经过二十多年的艰难研究,贝努利在该书中表述并证明了著名的大数定律。所谓大数定律,是指当实验次数很大时,事件出现的频率与概率有较大偏差的可能性很小。这一定律第一次在单一的概率值与众多现象的统计度量之间建立了演绎关系,成为了概率论与其应用领域的桥梁。因此,伯努利被称为概率论的奠基人。定义随机事件、概率等概念后,伯恩斯坦引进了三个公理。基于这三个公理构造出整个概率论大厦,但其理论体系并不令人满意。正如柯尔莫哥洛夫所说,第一个系统的概率论公理化体系是伯恩斯坦所给,其建立的基础是依据随机事件的概率对事件做定性比较的思想。在定性比较思想中概率的数值似乎是推导得出,而不是基本概念。米泽斯
7、的主要工作是概率论的频率定义与统计定义的公理化。在概率,统计和真理(1928)一书中,他建立了频率的极限理论,强调概率概念只在大量现象存在时才有意义。虽然频率定义在直观上易于理解,易为实际工作者和物理学家所接受,便于在实际工作生活中应用,但像某个事件在一独立重复试验序列中出现无穷多次这一事件的概率,米泽斯理论是无法定义的。数学家柯尔莫哥洛夫为概率论确定严密的理论基础。1933年,他发表了著名的概率论基础是概率论的一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论的一系列基本概念,提出了六条公理,整个概率论大厦便由这六条公理出发建筑起来。科尔莫戈罗夫的公理体系逐渐得到数学家们的普遍认可。公理化
8、结构明确定义了概率论发展史上的一个里程碑,为以后的概率论的迅速发展奠定了基础。(四)概率论与生活的关系 概率论已发展成为一门与实际紧密相连的理论严谨的数学科学。它内容丰富,结论深刻,有别开生面的研究课题,由自己独特的概念和方法,已经成为了近代数学一个有特色的分支。二、随机事件及其概率(一)事件分类生活中的事件发展过程包括必然事件,不可能事件和偶然事件。必然事件指的在每次的试验中,某一事件一定会发生。如,在100个红色小球中任取一个小球,则这个小球一定是红色的。在标准的大气压下,水加热到100,水就一定沸腾。不可能事件指的是在试验中不可能发生发生的事件。如,从混有四件次品的产品中任意抽取五件,它
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 在生活中 应用
链接地址:https://www.31ppt.com/p-4236571.html