导数定义及其在中学数学中的应用毕业论文.doc
《导数定义及其在中学数学中的应用毕业论文.doc》由会员分享,可在线阅读,更多相关《导数定义及其在中学数学中的应用毕业论文.doc(15页珍藏版)》请在三一办公上搜索。
1、本科毕业论文(设计)题 目导数定义及其在中学数学中的应用学 院 数学与统计学院 专 业 数学与应用数学 年 级 2009级 学 号 姓 名 指 导 教 师 成 绩 目录摘要11.引言12. 导数的知识储备221 导数的定义与几何意义222 依定义求导数的方法223 导数的运算22.31几种常见函数的导数2232 导数的四则运算法则23导数在解题中的应用33.1 利用导数定义巧妙解题33.11 利用导数的定义求函数的极限33.12 利用导数的定义求函数在某点处的导数值53.13 利用导数定义判断函数的单调性63.14 利用导数定义判断函数切线的斜率63.2导数与其他知识点的联系73.21导数与函
2、数73.22 利用切线的几何意义解决问题93.23 导数与不等式103.24 导数与数列103.25 导数的实际应用114.总结125.参考文献.126.致谢.12导数定义及其在中学数学中的应用田茜西南大学数学与统计学院,重庆 400715 摘要:导数概念是数学分析基本概念,是近代数学的重要基础,同时也是联系初、高等数学的纽带。导数在中学数学中的应用特别广泛。本文将结合高考中导数相关题目,主要从导数的定义、导数与函数、导数与不等式、导数与数列以及导数的实际应用几个方面分析导数在中学数学中的广泛应用。 关键词:导数;定义;函数;应用The definition of derivative and
3、 its application in the middle school mathematicsTian XiSchool of Mathematics and Statistics, Southwest University, Chongqing 400715, ChinaAbstract: Derivative concept is the basic concept in mathematical analysis and is the important basis of modern mathematics. It is a link between elementary math
4、ematics and advanced mathematics. Derivative is widely used in the middle school mathematics. Combined with college entrance examination, this thesis mainly analyzes the application of derivative in the middle school mathematics from the perspectives of the definition of derivative, derivatives and
5、functions, derivatives and non-equality, derivative and derivative series and the practical applications of derivatives. Key words: derivative; function; definition; application 1.引言自从导数进入高中数学教材以后,与导数有关的问题就成了历年高考的热点正确运用导数的思想方法与基本理论解决中学数学中的问题,成为了中学数学教师和学生重点关注的对象。但是导数对于学生而言仍旧是一个难点,因为导数与其他的知识结合十分紧密。本文运
6、用导数的思想方法和基本理论,探讨导数在各个方面的基本应用,希望在解决导数相关题目时有一定的思路与方法。2. 导数的知识储备21 导数的定义与几何意义定义:设函数在包含的某个区间上有定义,如果比值在 趋于0时趋于确定的极限值,则称此极限值为函数在处的导数或微商,记作 注: 几何意义:函数在处的导数的几何意义,就是曲线在点处的切线的斜率,即斜率为过点P的切线方程为:22 依定义求导数的方法(1)求函数的改变量(2)求平均变化率(3)取极限,得导数 23 导数的运算2.31几种常见函数的导数(C为常数);();。232 导数的四则运算法则(1);(2);(3); (4);(5)若则。3导数在解题中的
7、应用3.1 利用导数定义巧妙解题 导数的定义,在解题中有广泛的应用,与此同时可以简化解题的步骤。下面将从导数的定义在函数、不等式、曲线斜率以及综合应用四个方面加以阐述。3.11 利用导数的定义求函数的极限例1设,则等于A B. C. D.分析:此题看似一个求极限的问题,但是根据导数的定义其实为在处的导数。故有两种解法,一种运用极限知识求解,另一种运用求导方法巧妙求解。解法一:解: C此种解法给出的是利用极限的基本知识求解,当时,。解法二:解:由导函数的定义可知,=, =因此选C解法一与解法二分别从两个角度来解析此题,一方面是从极限的角度,另一方面利用导数定义,解法二更为巧妙简单。例2若则的值为
8、A -3 B.-6 C.-9 D.-12分析:此题同理可以利用导数定义巧妙求解,但是此处给出的极限式子有别于定义标准形式,需要进行适当的变形。 解:根据导数的定义可知, =4= D此题关键在于将此题给出的极限式子与导数定义产生联系,并明确导数定义中并非确定的一个数,任意的数均可。例3已知则的值为( ). A.0 B.2 C.3 D.6分析:此题也容易想到运用导数定义求解,但关键在于将充分运用在极限式子中,将3转换为,将极限式子进行变形,具体解法如下。解: 故选C.以上三道例题展现了函数的极限与导数的定义充分结合,将极限转换成求函数的导数。3.12 利用导数的定义求函数在某点处的导数值例4已知,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数定义及其在中学数学中的应用 毕业论文 导数 定义 及其 中学数学 中的 应用
链接地址:https://www.31ppt.com/p-4235770.html