反函数在生活中的应用毕业论文.doc
《反函数在生活中的应用毕业论文.doc》由会员分享,可在线阅读,更多相关《反函数在生活中的应用毕业论文.doc(15页珍藏版)》请在三一办公上搜索。
1、 毕业论文题 目:反函数在生活中的应用 院 系: 数学与计算机科学学院 指导教师: 班 级: 08级数应(2)班 姓 名: 完成时间: 2012-4-5 反函数在生活中的应用摘要: 数学是一种应用非常广泛的学科。数学家华罗庚曾经说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生活之迷、日月之繁,无处不用数学。”这可以说是对数学与生活的关系的完美阐述。新课程标准出现的一类新颖试题,近年来与实际生活相结合的题目屡见不鲜,不仅要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味,而且还要激发学生
2、运用数学解决实际问题的兴趣,做到学以致用,进一步体会数学的作用和价值,感受到数学的魅力。本文应用分析、比较等数学思维研究方法对数学中的反函数进行探讨来以求解决日常中遇到的实际问题。关键词:反函数 定义域 值域 图像Abstract: mathematics is a very extensive subject. Mathematician hua luogeng once said: the universe of the big, the micro particles of speed, chemical industry, the rockets of chocolate, and c
3、hange, the life of the earth, the sun and the moon is the fan is numerous, without mathematics. This can be said to mathematics and the relationship between the perfect life of this paper. The new curriculum standard an emerging class of new questions, in recent years and practical life with the com
4、bination of common topic, not only request mathematics teaching must be familiar life scenes from students and interested in things start to make students have more opportunities from familiar things around in learning mathematics and understand math, and realize the math is right there and feel the
5、 mathematics interest, but also to stimulate the students mathematical problem solving interest, do application, and further experience of mathematics function and value, feel the charm of mathematics. This paper analysis and comparison of the application of mathematical thinking methods of mathemat
6、ical FanHanShu are discussed in order to solve the day-to-day to practical problems met in. 目录:1.反函数的概念51.1原函数与反函数的关系51.2反函数的定义52.反函数的性质62.1反函数相关性质的总结和分析62.1.1.互为反函数的两个函数的图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称62.1.2.函数存在反函数的充要条件是,函数的定义域与值域是一一映射;严格增(减)的函数一定有严格增(减)的反函数72.1.3.一个函数与它的反函数在相应区间上单调性一致72.1.4.大部分偶函
7、数不存在反函数82.1.5.点P(a,b)关于直线 y=x 对称的点是P1(b,a)82.1.6.严格增(减)的函数一定有严格增(减)的反函数82.1.7.反函数是相互的且具有唯一性82.1.8.定义域、值域相反对应法则互逆92.1.9. 原函数一旦确定,反函数即确定93.反函数在日常生活中的应用93.1求反函数的步骤93.1.1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域93.1.2、反解x,也就是用y来表示x103.1.3、改写,交换位置,也就是把x改成y,把y改成x103.1.4、写出原函数及其值域103.1.5.反函数求解三步骤103.2数学中反函数的相关例题分析103.
8、2.1函数是高中数学中的重要内容,反函数又是函数的重要组成部分,也是同学们学习函数的难点之一。反函数在历年高考中也占有一定的比例。在生活中我们也遇到许多数学问题通过转换成反函数解决更容易103.2.2通过比较互为反函数图象间的关系来解决实际问题13引言:数学家波利亚曾说:“数学教师的责任是尽其可能来发展学生解决问题的能力。”可见体会数学的意义和价值,联系生活实际理解并掌握知识,不是我们的最终目标。学以致用,应用所学的知识去发现、分析、直至解决生活中的问题,才是最终的目标。数学源于生活,更应该应用于生活以及在解决数学问题中转换一个角度去考虑问题会更简单易懂。无论我们从事何种学习,其唯一目的就是利
9、用所学知识解决生活中我们遇到的问题,数学中有些函数看似非常复杂如果我们转换成反函数,用反函数的思想去求其定义域及其相关问题会更简单。在初高中的数学教材中都多多少少涉及到了反函数,虽然反函数在中高考中所占比例都不是很大,但这并不能忽视反函数在生活中以及数学中的重要地位。要想充分利用某一知识点解决实际问题,必须对知识做到理解、掌握,从而才可以做到将理论知识灵活应用。本文将通过对反函数的概念、性质等多方面的分析,从而引出反函数日常生活中及在解决数学问题方面的应用。增强同学们换位思考的意识,从而达到解题目的。1.反函数的概念1.1原函数与反函数的关系 关于反函数的概念,课本上和很多资料上都是采用由具体
10、到抽象、由特殊到一般的思想方法,即举二到三个具体的函数,如物理中的位移,速度(暂定为常量),时间的关系:,表示位移是时间 的函数,其中是自变量,是函数值;反过来,也可以用位移和速度来表示时间,即 sv,其中是自变量,是函数值. 再进一步分析这两个函数,明确他们之间的关系,进而根据函数的概念概括出反函数的概念。由于函数是一种对应关系,这个概念本身就不好理解,而反函数又是函数中的一种特殊现象,另外,反函数的概念比较抽象,文字叙述又比较长. 所以要弄清反函数的概念,正确理解反函数与函数之间的关系是必不可少的重要环节. 因此,要弄清反函数的概念,又不得不弄清函数和反函数的“三反”关系,再根据函数的概念
11、来理清反函数的概念 1.2反函数的定义一般地,我们设函数y=f(x)(xA)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(yC)叫做函数y=f(x)(xA)的反函数,记作. 反函数的定义域、值域分别是函数y=f(x)的值域、定义域.(定义域 :指该函数的有效范围,其关于原点对称是指它有效值关于原点对称 。)例题1:已知f(x)=(x3), 求f-1(5)。 解:设f-1(5)=x0, 则 f(x0)=
12、5,即 =5 (x03) x02+1=5x0-5, x02-5x0+6=0。解得x0=3或x0=2(舍), f-1(5)=3。例题2:已知f(x)=的反函数为f-1(x)=,求a,b,c的值。解:求f-1(x)=的反函数,令f-1(x)=y有yx-3y=2x+5.(y-2)x=3y+5 x=(y2),f-1(x)的反函数为 y=.即=, a=3, b=5, c=-2。2.反函数的性质 2.1反函数相关性质的总结和分析。数学知识的性质是指从数学概念直接推导得出的运算法则或者运算公式等延伸的知识,数学知识的概念和性质具有紧密的衔接关系。反函数性质就是指从反函数的概念直接推导出的反函数的运算形式 。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反函数在生活中的应用 毕业论文 反函数 在生活中 应用
链接地址:https://www.31ppt.com/p-4235496.html