全国名校高中数学题库椭圆.doc
《全国名校高中数学题库椭圆.doc》由会员分享,可在线阅读,更多相关《全国名校高中数学题库椭圆.doc(41页珍藏版)》请在三一办公上搜索。
1、椭圆标准方程典型例题例1 已知椭圆的一个焦点为(0,2)求的值分析:把椭圆的方程化为标准方程,由,根据关系可求出的值解:方程变形为因为焦点在轴上,所以,解得又,所以,适合故例2 已知椭圆的中心在原点,且经过点,求椭圆的标准方程分析:因椭圆的中心在原点,故其标准方程有两种情况根据题设条件,运用待定系数法,求出参数和(或和)的值,即可求得椭圆的标准方程解:当焦点在轴上时,设其方程为由椭圆过点,知又,代入得,故椭圆的方程为当焦点在轴上时,设其方程为由椭圆过点,知又,联立解得,故椭圆的方程为例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹分析:(1)由已知可得,再利用椭圆定义求
2、解(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程解: (1)以所在的直线为轴,中点为原点建立直角坐标系设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点因,有,故其方程为(2)设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程解:设两焦点为、,且,从椭圆定义知即从知垂直焦点所在的对称轴,所以在中,可求出,从而所求椭圆方程为或例5 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角的两
3、邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦定理知: 由椭圆定义知: ,则得 故 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法例7 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹
4、方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则得由题意知,则上式两端同除以,有,将代入得(1)将,代入,得,故所求直线方程为: 将代入椭圆方程得,符合题意,为所求(2)将代入得所求轨迹方程为: (椭圆内部分)(3)将代入得所求轨迹方程为: (椭圆内部分)(4)由得 : , , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决例8 已知椭
5、圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程解:(1)把直线方程代入椭圆方程得 ,即,解得(2)设直线与椭圆的两个交点的横坐标为,由(1)得,根据弦长公式得 :解得方程为说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程例9 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程分析:椭圆的焦点容易求出,按照椭圆的定义,本题
6、实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决解:如图所示,椭圆的焦点为,点关于直线的对称点的坐标为(9,6),直线的方程为解方程组得交点的坐标为(5,4)此时最小所求椭圆的长轴:,又,因此,所求椭圆的方程为例10 已知方程表示椭圆,求的取值范围解:由得,且满足条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例11 已知表示焦点在轴上的椭圆,求的取值范围分析:依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值范围解:方程可化为因为焦
7、点在轴上,所以因此且从而说明:(1)由椭圆的标准方程知,这是容易忽视的地方(2)由焦点在轴上,知, (3)求的取值范围时,应注意题目中的条件例12求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为(,),且不必去考虑焦点在哪个坐标轴上,直接可求出方程解:设所求椭圆方程为(,)由和两点在椭圆上可得即所以,故所求的椭圆方程为例13 知圆,从这个圆上任意一点向轴作垂线段,求线段中点的轨迹分析:本题是已知一些轨迹,求动点轨迹问题这种题目一般利用中间变量(相关点)求轨迹方程或轨迹解:设点的坐标为,点的坐标为,则
8、,因为在圆上,所以将,代入方程得所以点的轨迹是一个椭圆说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为,设已知轨迹上的点的坐标为,然后根据题目要求,使,与,建立等式关系,从而由这些等式关系求出和代入已知的轨迹方程,就可以求出关于,的方程,化简后即我们所求的方程这种方法是求轨迹方程的最基本的方法,必须掌握例14 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长分析:可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求解:(法1)利用直线与椭圆相交的弦长公式求解因为,所以因为焦点在轴上,所以
9、椭圆方程为,左焦点,从而直线方程为由直线方程与椭圆方程联立得:设,为方程两根,所以, 从而(法2)利用椭圆的定义及余弦定理求解由题意可知椭圆方程为,设,则,在中,即;所以同理在中,用余弦定理得,所以(法3)利用焦半径求解先根据直线与椭圆联立的方程求出方程的两根,它们分别是,的横坐标再根据焦半径,从而求出例15椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A4B2 C8 D解:如图所示,设椭圆的另一个焦点为,由椭圆第一定义得,所以,又因为为的中位线,所以,故答案为A说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于)的点的轨迹叫做椭圆(2)椭圆上的点必定适合椭圆的这一定义
10、,即,利用这个等式可以解决椭圆上的点与焦点的有关距离例16 已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上利用上述条件建立的不等式即可求得的取值范围解:(法1)设椭圆上,两点关于直线对称,直线与交于点的斜率,设直线的方程为由方程组消去得。于是,即点的坐标为点在直线上,解得将式代入式得,是椭圆上的两点,解得(法2)同解法1得出,即点坐标为,为椭圆上的两点,点在椭圆的内部,解得(法3)设,是椭圆上关于对称的两点,直线与的交点的坐标为,在椭圆上,两式相减得,即又直线,即。又点在直线上,。由
11、,得点的坐标为以下同解法2.说明:涉及椭圆上两点,关于直线恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:(1)利用直线与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式,建立参数方程(2)利用弦的中点在椭圆内部,满足,将,利用参数表示,建立参数不等式例17 在面积为1的中,建立适当的坐标系,求出以、为焦点且过点的椭圆方程解:以的中点为原点,所在直线为轴建立直角坐标系,设则即得所求椭圆方程为例18 已知是直线被椭圆所截得的线段的中点,求直线的方程分析:本题考查直线与椭圆的位置关系问题通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元
12、二次方程,再由根与系数的关系,直接求出,(或,)的值代入计算即得并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的解:方法一:设所求直线方程为代入椭圆方程,整理得 设直线与椭圆的交点为,则、是的两根,为中点,所求直线方程为方法二:设直线与椭圆交点,为中点,又,在椭圆上,两式相减得,即直线方程为方法三:设所求直线与椭圆的一个交点为,另一个交点、在椭圆上,。 从而,在方程的图形上,而过、的直线只有一条,直线方程为说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法若已知焦点是、的椭圆截直线所得弦中点的横坐标是4,则如何求
13、椭圆方程?典型例题一例1 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程分析:题目没有指出焦点的位置,要考虑两种位置解:(1)当为长轴端点时,椭圆的标准方程为:;(2)当为短轴端点时,椭圆的标准方程为:;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率解: ,说明:求椭圆的离心率问题,通常有两种处理方法,一是求,求,再求比二是列含和的齐次方程,再化含的方程,解方程即可典型例题三例3 已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭
14、圆的短轴长为2,求椭圆的方程解:由题意,设椭圆方程为,由,得,为所求说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题典型例题四例4椭圆上不同三点,与焦点的距离成等差数列(1)求证;(2)若线段的垂直平分线与轴的交点为,求直线的斜率证明:(1)由椭圆方程知,由圆锥曲线的统一定义知:, 同理 ,且, ,即 (2)因为线段的中点为,所以它的垂直平分线方程为 又点在轴上,设其坐标为,代入上式,得 又点,都在椭圆上, 将此式代入,并利用的结论得 典型例题五例5 已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是
15、与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由解:假设存在,设,由已知条件得,左准线的方程是,又由焦半径公式知:,整理得解之得或 另一方面 则与矛盾,所以满足条件的点不存在说明:(1)利用焦半径公式解常可简化解题过程(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算进而根据推理得到的结果,再作判断(3)本例也可设存在,推出矛盾结论(读者自己完成)典型例题六例6 已知椭圆,求过点且被平分的弦所在的直线方程分析一:已知一点求直线,关键是求斜率,故设斜率为,利用条件求解法一:设所求直线的斜率为,则直线方程为代入椭圆方程,并整理得由韦达定理得是弦中
16、点,故得所以所求直线方程为分析二:设弦两端坐标为、,列关于、的方程组,从而求斜率:解法二:设过的直线与椭圆交于、,则由题意得得 将、代入得,即直线的斜率为所求直线方程为说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”有关二次曲线问题也适用典型例题七例7 求适合条件的椭圆的标准方程(1)长轴长是短轴长的2倍,且过点;(2)在轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6分析:当方程有两种形式时,应分
17、别求解,如(1)题中由求出,在得方程后,不能依此写出另一方程解:(1)设椭圆的标准方程为或由已知 又过点,因此有或 由、,得,或,故所求的方程为或(2)设方程为由已知,所以故所求方程为说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”关键在于焦点的位置是否确定,若不能确定,应设方程或典型例题八例8 椭圆的右焦点为,过点,点在椭圆上,当为最小值时,求点的坐标分析:本题的关键是求出离心率,把转化为到右准线的距离,从而得最小值一般地,求均可用此法解:由已知:,所以,右准线过作,垂足为,交椭圆于,故显然的最小值为,即为所求点,因此,且在椭圆上故所以说明:本题关键在于未知式中的“2”的处理事实上,
18、如图,即是到右准线的距离的一半,即图中的,问题转化为求椭圆上一点,使到的距离与到右准线距离之和取最小值典型例题九例9 求椭圆上的点到直线的距离的最小值分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值解:椭圆的参数方程为设椭圆上的点的坐标为,则点到直线的距离为当时,说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程典型例题十例10 设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上的点的距离等于的点的坐标分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求的最大值时,要注意讨论的取值范
19、围此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力解法一:设所求椭圆的直角坐标方程是,其中待定由可得,即设椭圆上的点到点的距离是,则 其中如果,则当时,(从而)有最大值由题设得,由此得,与矛盾因此必有成立,于是当时,(从而)有最大值由题设得,可得,所求椭圆方程是由及求得的椭圆方程可得,椭圆上的点,点到点的距离是解法二:根据题设条件,可取椭圆的参数方程是,其中,待定,为参数由可得,即设椭圆上的点到点的距离为,则 如果,即,则当时,(从而)有最大值由题设得,由此得,与矛盾,因此必有成立于是当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 名校 高中数学 题库 椭圆
链接地址:https://www.31ppt.com/p-4235290.html