向量小结复习不等式单元知识总结.doc
《向量小结复习不等式单元知识总结.doc》由会员分享,可在线阅读,更多相关《向量小结复习不等式单元知识总结.doc(26页珍藏版)》请在三一办公上搜索。
1、小 结 与 复 习目标要求:1、通过对知识的小结、深化知识间的内在联系。 2、通过例习题的讲练,提高综合运用知识解决问题的能力。教学过程:一、 内容小结1、 向量知识(1) 叫做向量。(2)向量的运算:运 算定义(法则)运算律坐标运算加 法 运 算减 法 运 算实数与向量的积平面向量的数量积 (3)平面向量的基本定理:如果和是同一平面内的两个不共线的向量,那么 。(4)两个向量平行和垂直的充要条件: ; ;与的夹角 。(5)线段的定比分点坐标公式:设,且,则时,得中点坐标公式:(6)平移公式点按平移到,则2、 解斜三角形(1)正弦定理: = = 。(2)余弦定理: 分别如何证明的。(3)应用
2、解题的一般步骤: 解题中的注意事项: 二、 本章学习要求和需要注意的问题向量是数形结合的桥梁三、 例题选讲1、 已知:,当为何值时, 与垂直? 与平行?平行时它们是同向还是反向?2、 如图,与的夹角为,求及与的夹角(长度保留四个有效数字,角度精确到)。3、 在中,求一点,使最小。4、 以原点为两个顶点作等腰三角形,使,求点和的坐标。四、 小结、布置作业P149 6,7,11,12,13单元知识总结 一、不等式的性质1两个实数a与b之间的大小关系2不等式的性质(4)(乘法单调性)3绝对值不等式的性质(2)如果a0,那么(3)|ab|a|b|(5)|a|b|ab|a|b|(6)|a1a2an|a1
3、|a2|an|二、不等式的证明1不等式证明的依据(2)不等式的性质(略)(3)重要不等式:|a|0;a20;(ab)20(a、bR)a2b22ab(a、bR,当且仅当a=b时取“=”号)2不等式的证明方法(1)比较法:要证明ab(ab),只要证明ab0(ab0),这种证明不等式的方法叫做比较法用比较法证明不等式的步骤是:作差变形判断符号(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法
4、叫做分析法证明不等式除以上三种基本方法外,还有反证法、数学归纳法等三、解不等式1解不等式问题的分类(1)解一元一次不等式(2)解一元二次不等式(3)可以化为一元一次或一元二次不等式的不等式解一元高次不等式;解分式不等式;解无理不等式;解指数不等式;解对数不等式;解带绝对值的不等式;解不等式组2解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质(2)正确应用幂函数、指数函数和对数函数的增、减性(3)注意代数式中未知数的取值范围3不等式的同解性(5)|f(x)|g(x)与g(x)f(x)g(x)同解(g(x)0)(6)|f(x)|g(x)与f(x)g(x)或f(x)g(x)(其中g(x)
5、0)同解;与g(x)0同解(9)当a1时,af(x)ag(x)与f(x)g(x)同解,当0a1时,af(x)ag(x)与f(x)g(x)同解 单元知识总结 一、坐标法1点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x,y)建立了一一对应的关系2两点间的距离公式设两点的坐标为P1(x1,y1),P2(x2,y2),则两点间的距离特殊位置的两点间的距离,可用坐标差的绝对值表示:(1)当x1=x2时(两点在y轴上或两点连线平行于y轴),则|P1P2|=|y2y1|(2)当y1=y2时(两点在x轴上或两点连线平行于x轴),则|P1P2|=|x2x1|3线段的定比分点(2)公式:分P1(
6、x1,y2)和P2(x2,y2)连线所成的比为的分点坐标是公式二、直线1直线的倾斜角和斜率(1)当直线和x轴相交时,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角当直线和x轴平行线重合时,规定直线的倾斜角为0所以直线的倾斜角0,)(2)倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜当k0时,=arctank(锐角)当k0时,=arctank(钝角)(3)斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为2直线的方程(1)点斜式 已知直线过点(x0,y0),斜率为k,则其方程为:yy0=k(xx0)(2)斜截式 已知直线在y轴上的截距
7、为b,斜率为k,则其方程为:y=kxb(3)两点式 已知直线过两点(x1,y1)和(x2,y2),则其方程为:(4)截距式 已知直线在x,y轴上截距分别为a、b,则其方程为:(5)参数式 已知直线过点P(x0,y0),它的一个方向向量是(a,b),v(cos,sin)(为倾斜角)时,则其参数式方程为(6)一般式 AxByC=0 (A、B不同时为0)(7)特殊的直线方程垂直于x轴且截距为a的直线方程是x=a,y轴的方程是x=0垂直于y轴且截距为b的直线方程是y=b,x轴的方程是y=03两条直线的位置关系(1)平行:当直线l1和l2有斜截式方程时,k1=k2且b1b2(2)重合:当l1和l2有斜截
8、式方程时,k1=k2且b1=b2,当l1和l2是(3)相交:当l1,l2是斜截式方程时,k1k24点P(x0,y0)与直线l:AxByC=0的位置关系:5两条平行直线l1AxByC1=0,l2AxByC2=0间6直线系方程具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x,y以外,还含有特定的系数(也称参变量)确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量(1)共点直线系方程:经过两直线l1A1xB1yC1=0,l2A2xB2yC2=0的交点的直线系方程为:A1xB1yC1(A2
9、xB2yC2)=0,其中是待定的系数在这个方程中,无论取什么实数,都得不到A2xB2yC2=0,因此它不表示l2当=0时,即得A1xB1yC1=0,此时表示l1(2)平行直线系方程:直线y=kxb中当斜率k一定而b变动时,表示平行直线系方程与直线AxByC=0平行的直线系方程是AxBy=0(C),是参变量(3)垂直直线系方程:与直线AxByC=0(A0,B0)垂直的直线系方程是:BxAy=0如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解7简单的线性规划(1)二元一次不等式AxByC0(或0)表示直线AxByC=0某一侧所有点组成的平面区域二元一次不等式组所表
10、示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,例如,z=axby,其中x,y满足下列条件:求z的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x、y的线性约束条件,z=axby叫做线性目标函数满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解三、曲线和方程1定义在选定的直角坐标系下,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线C上的点的坐标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量小结复习 不等式单元知识总结 向量 小结 复习 不等式 单元 知识 总结
链接地址:https://www.31ppt.com/p-4235181.html