《函数的单调性、奇偶性与周期性练习一.doc》由会员分享,可在线阅读,更多相关《函数的单调性、奇偶性与周期性练习一.doc(6页珍藏版)》请在三一办公上搜索。
1、例1已知函数f (x)=的图像关于原点对称,其中m,n为实常数。(1) 求m , n的值;(2) (2)试用单调性的定义证明:在区间上是单调函数.例2设f (x)是定义在R上的偶函数,在区间(,0)上单调递增,且满足, 求实数a的取值范围。例3判断下列函数的奇偶性: 例4(1)是定义在R上的奇函数,它的最小正周期为T, 则的值为(2)定义在实数集上的函数满足,且,则是以 为一个周期的周期函数.(3)已知定义在R上的函数y= f (x)满足f (2+x)= f (2x),且f (x)是偶函数,当x0,2时,f (x)=2x1,当x4,0时,f (x)的表达式为._练习题一、 选择题1若函数, 则
2、该函数在上是 A单调递减无最小值 B单调递减有最小值 C单调递增无最大值 D单调递增有最大值2若函数f(x)是定义在R上的偶函数,在上是减函数,且f (2)=0,则使得f (x) c bBabcCba cDc ab5若f (x)是奇函数,且在(0,+)上是增函数, 又,则xf (x)0的解集是Ax|3x0或x3Bx|x3或0x3 C. D.6如果f(x)是定义在R上的偶函数,它在上是减函数,那么下述式子中正确的是ABC D以上关系均不确定7是定义在R上,以2为周期的偶函数, 时,的表达式为A B C D8对于函数=1g 的奇偶数性,下列判断中正确的是A是偶函数 B是奇函数 C既奇又偶函数 D非
3、奇非偶函数9奇函数y= f(x)(x0),当x(0,+)时,f(x)= x1,则函数f(x1)的图象为10设f (x)为奇函数,对任意xR,均有f (x+4)=f (x),已知f (1)=3,则f (3)等于A3 B3 C4 D411设函数f (x)是定义在R上以3为周期的奇函数,若f (1)1,f (2),则Aa Ba且a1 Ca或a1 D.1a12下列函数既是奇函数,又在区间上单调递减的是A B C D二、 填空题13设偶函数f (x)在上为减函数,则不等式f (x) f (2x+1) 的解集是 14若函数f (x)=4x3ax+3的单调递减区间是,则实数a的值为 .15若函数是奇函数,则
4、a= 16设f(x)是定义在R上的奇函数,且y=f (x)的图象关于直线对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_.三、解答题17已知f (x)是定义在R上的增函数,对xR有f (x)0,且f (5)=1,设F(x)= f (x)+,讨论F (x)的单调性,并证明你的结论。18设函数,(1)当k为何值时,函数f (x)单调递减区间是(0,4);(2)当k为何值时,函数f (x)在(0,4)内单调递减。19已知函数y=f (x)是定义在R上的周期函数,周期T=5,函数y= f (x) (1x1)是奇函数,又知y=f (x)在0,1上是一次函数,在1,4上是二次
5、函数,且在x=2时函数取得最小值,最小值为5。(1)证明:f (1)+f (4)=0;(2)试求y=f (x)在1,4上的解析式;(3)试求y=f (x)在4,9上的解析式。(五)函数的单调性、奇偶性与周期性参考答案(三)、例题讲评例1解:(1)由于f (x)图象关于原点对称,则f (x)是奇函数,由 得例2为R上的偶函数, 在区间上单调递增,而偶函数图象关于y轴对称, 在区间(0,+)上单调递减, 实数a的取值范围是(4,1).例3(1)函数定义域为R, ,f(x)为偶函数; (另解)先化简:,显然为偶函数; 从这可以看出,化简后再解决要容易得多.(2)须要分两段讨论:设设当x=0时f(x)
6、=0,也满足f (x)=f (x);由、知,对xR有f (x) =f (x), f (x)为奇函数;(3),函数的定义域为,f(x)=log21=0(x=1) ,即f(x)的图象由两个点 A(1,0)与B(1,0)组成,这两点既关于y轴对称,又关于原点对称,f(x)既是奇函数,又是偶函数;例4(1)选B; (2) 4; 提示:(3)由条件可以看出,应将区间4,0分成两段考虑:若x2,0,x0,2,f (x)为偶函数, 当x2,0时,f (x)= f (x)=2x1,若x4,2 , 4+ x0,2,f (2+x)= f (2x), f (x)= f (4x),f(x)= f (x)= f4(x)
7、= f (4+x)=2(x+4)1=2x+7; 综上,(一) 练习题一、选择题题号123456789101112答案ADBBAADBDBDD7提示:即当时,当,11. 提示: 二、填空题13; 143 ; 15 160三、解答题17在R上任取x1、x2,设x1x2,f (x2)= f (x1), f (x)是R上的增函数,且f (10)=1,当x10时0 f (x)10时f (x)1;若x1x25,则0f (x1)f (x2)1, 0 f (x1)f (x2)1, 0, F (x2)x15,则f (x2)f (x1)1 , f (x1)f (x2)1, 0, F(x2) F (x1);综上,F (x)在(,5)为减函数,在(5,+)为增函数.18对f (x)求导得:,(1)函数f (x)的单调递减区间是(0,4),不等式f (x)0的解集为x|0x4, 得kx2+2(k1)x0,x=0或4是方程kx2+2(k1)x=0的两根,将x=4代入得k=,由二次不等式性质知所求k值为.(2)命题等价于kx2+2(k1)x0对x(0,4)恒成立,设g (x)=kx+2(k1), g (x)为单调函数,(或分离变量)恒成立,记.19(1)证明:略. (2)解:f (x)=2(x2)25(1x4);(3)解:f (x)=
链接地址:https://www.31ppt.com/p-4234785.html