[高考数学]山东高考理科数学答案以及解析.doc
《[高考数学]山东高考理科数学答案以及解析.doc》由会员分享,可在线阅读,更多相关《[高考数学]山东高考理科数学答案以及解析.doc(67页珍藏版)》请在三一办公上搜索。
1、2007年高考数学山东卷(理科)详细解析一选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,选择符合题目要求的选项。1 若(为虚数单位),则的值可能是 (A) (B) (C) (D) 【答案】:D【分析】:把代入验证即得。2 已知集合,则 (A) (B) (C) (D) 【答案】:B【分析】:求。3下列几何体各自的三视图中,有且仅有两个视图相同的是(A) (B) (C) (D) 【答案】:D【分析】:从选项看只要判断正方体的三视图都相同就可以选出正确答案。4 设,则使函数的定义域为R且为奇函数的所有值为(A) (B) (C) (D) 【答案】:A【分析】:观察四种幂函数
2、的图象并结合该函数的性质确定选项。5 函数的最小正周期和最大值分别为(A) (B) (C) (D) 【答案】:A【分析】:化成的形式进行判断即。6 给出下列三个等式:,。下列函数中不满足其中任何一个等式的是(A) (B) (C) (D) 【答案】:B【分析】:依据指、对数函数的性质可以发现A,C满足其中的一个等式,而D满足,B不满足其中任何一个等式.7 命题“对任意的,”的否定是(A)不存在, (B)存在,(C)存在, (D)对任意的,【答案】:C【分析】:注意两点:1)全称命题变为特称命题;2)只对结论进行否定。8 某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按
3、如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;第六组,成绩大于等于18秒且小于19秒。右图是按上述分组方法得到的频率分布直方图。设成绩小于17秒的学生人数占全班总人数的百分比为,成绩大于等于15秒且小于17秒的学生人数为,则从频率分布直方图中可分析出和分别为(A) (B) (C) (D) 0.360.340.180.060.040.02O 13 14 15 16 17 18 19【答案】: A.【分析】:从频率分布直方图上可以看出,.9 下列各小题中,是的充要条件的是(1)或;有两个不同的零点。(2) 是偶函数。(3) 。(4) 。(A) (
4、B) (C) (D) 【答案】: D.【分析】:(2)由可得,但的定义域不一定关于原点对称;(3)是的既不充分也不必要条件。10 阅读右边的程序框图,若输入的是100,则输出的变量S和T的值依次是(A) (B) (C) (D) 否是开始输入n 结束输出【答案】:D.【试题分析】:依据框图可得,。11 在直角中,是斜边上的高,则下列等式不成立的是(A) (B) (C) (D) 【答案】:C.【分析】: ,A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确.12 位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质
5、点P 移动5次后位于点的概率为(A) (B) (C) (D) 【答案】:B.【分析】:质点在移动过程中向右移动2次向上移动3次,因此质点P 移动5次后位于点的概率为。二填空题:本大题共4小题,每小题4分,共16分,答案须填在题中横线上。1313 设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为_.【答案】: 【分析】:过A 作轴于D,令,则,。14设是不等式组表示的平面区域,则中的点到直线距离的最大值是_.【答案】:【分析】:画图确定可行域,从而确定到直线直线距离的最大为15与直线和曲线都相切的半径最小的圆的标准方程是_.【答案】:. 【分析】:曲线化为,其圆心到直线的距
6、离为所求的最小圆的圆心在直线上,其到直线的距离为,圆心坐标为标准方程为。16函数的图象恒过定点,若点在直线上,其中,则的最小值为_.【答案】: 8。【分析】:函数的图象恒过定点,三解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤。(17)(本小题满分12分)设数列满足(I)求数列的通项; (II)设求数列的前项和.解:: (I) 验证时也满足上式,(II) , , 18(本小题满分12分)设分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(I)求方程 有实根的概率;(II) 求的分布列和数学期望;(III)求在先后两次出现的点数中有5的条
7、件下,方程 有实根的概率.解::(I)基本事件总数为,若使方程有实根,则,即。当时,;当时,;当时,;当时,;当时,;当时,,目标事件个数为因此方程 有实根的概率为(II)由题意知,则,故的分布列为012P的数学期望(III)记“先后两次出现的点数中有5”为事件M,“方程 有实根” 为事件N,则,.19(本小题满分12分)如图,在直四棱柱中,已知,.(I)设是的中点,求证: ;(II)求二面角的余弦值. 解::(I)连结,则四边形为正方形,且,为平行四边形,.(II) 以D为原点,所在直线分别为轴、轴、轴,建立空间直角坐标系,不妨设,则设为平面的一个法向量,由得,取,则. 设为平面的一个法向量
8、,由得,取,则.由于该二面角为锐角,所以所求的二面角的余弦值为北乙甲(20)(本小题满分12分)如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西的方向处,此时两船相距20海里.当甲船航行20分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?解:如图,连结,是等边三角形,在中,由余弦定理得,因此乙船的速度的大小为答:乙船每小时航行海里.(21)(本小题满分12分)已知椭圆C的中心在坐标原点,焦点在轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1.(I)求椭圆C的标准方程;(II)若直线与椭圆
9、C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线过定点,并求出该定点的坐标.解:(I)由题意设椭圆的标准方程为, (II)设,由得,.以AB为直径的圆过椭圆的右顶点,解得,且满足.当时,直线过定点与已知矛盾;当时,直线过定点综上可知,直线过定点,定点坐标为(22)(本小题满分14分)设函数,其中.(I)当时,判断函数在定义域上的单调性;(II)求函数的极值点;(III)证明对任意的正整数,不等式都成立.解:(I) 函数的定义域为.,令,则在上递增,在上递减,.当时,在上恒成立.即当时,函数在定义域上单调递增。(II)分以下几种情形讨论:(1)由(I)知当
10、时函数无极值点.(2)当时,时,时,时,函数在上无极值点。(3)当时,解得两个不同解,.当时,此时在上有唯一的极小值点.当时,在都大于0 ,在上小于0 ,此时有一个极大值点和一个极小值点.综上可知,时,在上有唯一的极小值点;时,有一个极大值点和一个极小值点;时,函数在上无极值点。(III) 当时,令则在上恒正,在上单调递增,当时,恒有.即当时,有,对任意正整数,取得2008年普通高等学校招生全国统一考试(山东卷)数学(理)第卷(共60分)参考公式:球的表面积公式:S4r2,其中R是球的半径.如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件A恰好发生k次的概率:Pn(k)Cpk(
11、1-p)n-k(k0,1,2,n).如果事件A、B互斥,那么P(A+B)P(A)+P(B).如果事件A、B相互独立,那么P(AB)P(A)P(B).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足且的集合的个数是(A)1(B)2 (C)3 (D)4【解析】本题考查集合子集的概念及交集运算。 集合中必含有则答案:B(2)设z的共轭复数是,或z+=4,z8,则等于(A)1(B)-i (C)1 (D) i【解析】本题考查共轭复数的概念、复数的运算。可设,由得答案:D(3)函数的图象是【解析】本题考查复合函数的图象。是偶函数,可排除B,
12、D; 由排除C,选A。答案:A(4)设函数的图象关于直线x1对称,则a的值为(A) 3 (B)2 (C)1 (D)-1【解析】本题考查分段函数的图象。、在数轴上表示点到点、的距离,它们的和关于 对称,因此点、关于对称,所以(直接去绝对值化成分段函数求解比较麻烦,如取特殊值解也可以)答案:A(5)已知,则的值是(A)-(B) (C)- (D) 【解析】本题考查三角函数变换与求值。,答案:C(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9(B)10(C)11 (D)12【解析】考查三视图与几何体的表面积。从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为
13、答案:D(7)在某地的奥运火炬传递活动中,有编号为1,2,3,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A)(B)(C)(D)【解析】本题考查古典概型。基本事件总数为。选出火炬手编号为,时,由可得4种选法;时,由可得4种选法;时,由可得4种选法。29 1 1 5 83 0 2 63 1 0 2 4 7答案:B(8)右图是根据山东统计年整2007中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得
14、到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A)304.6(B)303.6 (C)302.6 (D)301.6【解析】本题考查茎叶图、用样本数字特征估计总体特征。答案:B(9)(x-)12展开式中的常数项为(A)-1320(B)1320(C)-220 (D)220【解析】本题考查二项式定理及其应用答案:C(10)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(A) (B)(C) (D)【解析】本题考查椭圆、双曲线的标准方程。对于椭圆,曲线为双曲线,标准方程为:答案:A(11)已知圆的方程为
15、x2+y2-6x-8y0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(A)10(B)20(C)30(D)40【解析】本题考查直线与圆的位置关系。,过点的最长弦为最短弦为答案:B(12)设二元一次不等式组所表示的平面区域为M,使函数yax(a0,a1)的图象过区域M的a的取值范围是(A)1,3 (B)2, (C)2,9 (D),9【解析】本题考查线性规划与指数函数。如图阴影部分为平面区域M, 显然,只需要研究过、两种情形。且即答案:C第卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p0.8,则输出的n4. 【解析
16、】本题考查程序框图。,因此输出答案:4(14)设函数.若,0x01,则x0的值为.【解析】本题考查微积分定理的应用答案:(15)已知a,b,c为ABC的三个内角A,B,C的对边,向量m(),n(cosA,sinA).若mn,且acosB+bcosA=csinC,则角B.【解析】本题考查解三角形,。答案:(16)若不等式3x-b4的解集中的整数有且仅有1,2,3,则b的取值范围为(5,7).【解析】本题考查绝对值不等式,解得答案:(5,7)三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)已知函数f(x)为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为()求f()的值;()
17、将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求g(x)的单调递减区间.【解析】()f(x)2sin(-)因为f(x)为偶函数,所以对xR,f(-x)=f(x)恒成立,因此sin(-)sin(-).即-sincos(-)+cossin(-)=sincos(-)+cossin(-),整理得 sincos(-)=0.因为0,且xR,所以cos(-)0.又因为0,故-.所以f(x)2sin(+)=2cos.由题意得,所以故f(x)=2cos2x.因为 ()将f(x)的图象向右平移个个单位后,得到的图象,再将所得图象横坐标伸
18、长到原来的4倍,纵坐标不变,得到的图象.所以 当 (kZ), 即4kx4k+ (kZ)时,g(x)单调递减. 因此g(x)的单调递减区间为(kZ)(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用表示甲队的总得分.()求随机变量分布列和数学期望;()用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).【解析】()解法一:由题意知,的可能取值为0,1,2,3,且所以的分布列为0123P
19、的数学期望为E=解法二:根据题设可知因此的分布列为()解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=CD,且C、D互斥,又由互斥事件的概率公式得解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故事件P(AB)=P(A3B0A2B1)=P(A3B0)+P(A2B1).=(19)(本小题满分12分)将数列an中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2 a3a4 a5 a6a7 a8 a9 a10记表中的第一列数a1,a2,a4,a7,构成的数列为bn
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学 高考 数学 山东 理科 答案 以及 解析
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4233367.html