[状元桥]高三数学(文)二轮复习教师用书:专题十一 空间点、直线、平面之间的位置关系.doc
《[状元桥]高三数学(文)二轮复习教师用书:专题十一 空间点、直线、平面之间的位置关系.doc》由会员分享,可在线阅读,更多相关《[状元桥]高三数学(文)二轮复习教师用书:专题十一 空间点、直线、平面之间的位置关系.doc(25页珍藏版)》请在三一办公上搜索。
1、专题十一空间点、直线、平面之间的位置关系(见学生用书P67)(见学生用书P67)1空间两直线有相交、平行、异面三种位置关系2线面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行线面平行性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行3线面垂直判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直4面面平行判定定理:一个平面内的两条相交直线与另一个平面都平行,则这两个平面平行面面平行性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行5面面垂直判定定理:一个平面过另一个平面的垂线,则这两个平面垂直面面垂直
2、性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直(见学生用书P68)考点一平面的基本关系考点精析1空间中,两条直线有相交、平行、异面三种位置关系2直线与平面的位置关系有:直线在平面上、直线与平面相交、直线与平面平行3两个不同平面的位置关系有:相交、平行例 11(2015广东卷)若直线l1和l2是异面直线l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交考点:空间中直线与直线之间的位置关系分析:根据条件确定相应的位置关系,再对照选项确定答案解析:
3、若l1,l2与l都不相交,则l1l2与直线l1和l2是异面直线矛盾,所以选项A错误若l1l,l2与l相交,则l1与l2异面若l1,l2与l都相交,则l1与l2异面或相交故l至少与l1,l2中的一条相交,故选D.答案:D点评:本题考查了空间中直线与直线的位置关系,考查了空间想象能力,属于中档题例 12(2015北京卷)如图,在三棱锥VABC中,平面VAB平面ABC,VAB为等边三角形,ACBC且ACBC,O,M分别为AB,VA的中点(1)求证:VB平面MOC;(2)求证:平面MOC平面VAB;(3)求三棱锥VABC的体积考点:直线与平面平行的判定,平面与平面垂直的判定和性质,三棱锥的体积等分析:
4、(1)利用线面平行的判定定理证明;(2)利用面面垂直的性质定理与判定定理证明;(3)利用等体积变换法将其转化为三棱锥CVAB的体积求解解析:(1)因为O,M分别为AB,VA的中点,所以OMVB.又因为MO平面MOC且VB平面MOC,所以VB平面MOC. (2)因为ACBC,O为AB的中点,所以OCAB.又因为平面VAB平面ABC,且OC平面ABC,所以OC平面VAB,所以平面MOC平面VAB. (3)在等腰直角三角形ACB中,ACBC,所以AB2,OC1,所以等边三角形VAB的面积SVAB.又因为OC平面VAB,所以三棱锥CVAB的体积等于OCSVAB.又因为三棱锥VABC的体积与三棱锥CVA
5、B的体积相等,所以三棱锥VABC的体积为.点评:本题考查了直线与平面平行的判定,平面与平面垂直的判定和性质,等体积法求三棱锥的体积等知识,考查了空间想象能力和推理论证能力规律总结空间线面位置关系的判定问题是历年高考的热点问题,这类问题难度不大,以容易题或中档题为主,主要是选择、填空题解决翻折问题的注意事项:(1)解决与翻折有关的几何问题的关键是搞清翻折前后哪些量改变、哪些量不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口(2)把平面图形翻折后,经过恰当连线就能得到三棱锥、四棱锥,从而把问题转化到我们熟悉的几何体中去解决变式训练【11】 (2015湖北卷)l1,l2表示空间
6、中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()Ap是q的充分条件,但不是q的必要条件Bp是q的必要条件,但不是q的充分条件Cp是q的充分必要条件Dp既不是q的充分条件,也不是q的必要条件解析:l1,l2是异面直线说明l1,l2既不平行,也不相交,而l1,l2不相交时,l1,l2可能平行,不一定异面,p是q的充分不必件条件答案:A考点二空间直线、平面位置关系的证明考点精析1证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行;(2)利用平行四边形进行转换;(3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明2证明线面平行的常用方
7、法(1)利用线面平行的判定定理,把证明线面平行转化为证明线线平行;(2)利用面面平行的性质定理,把证明线面平行转化为证明面面平行3证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;(2)利用面面垂直的性质定理,把证明线面垂直转化为证明面面垂直;(3)利用教材中常见结论,如:两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面等4证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行5证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明
8、线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决例 21(2015湖南卷)如图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点(1)证明:平面AEF平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45,求三棱锥FAEC的体积考点:空间线面、面面垂直关系的证明,直线与平面所成的角以及三棱锥的体积的计算分析:(1)要证明平面AEF与平面B1BCC1垂直,只要证明平面AEF内的直线AE与平面B1BCC1垂直即可,要证明直线AE与平面B1BCC1垂直,只要证明AE与BC及BB1垂直即可;(2)底面AEC的面
9、积易求,为求三棱锥的体积,只要求出FC的值即可解析:(1)证明:因为三棱住ABCA1B1C1是直三棱柱,所以AEBB1.又E是正三角形ABC的边BC的中点,所以AEBC.因此,AE平面B1BCC1.而AE平面AEF,所以平面AEF平面B1BCC1.(2)设AB的中点为D,连接A1D,CD.因为ABC是正三角形,所以CDAB.又三棱柱ABCA1B1C1是直三棱柱,所以CDAA1.因此CD平面A1ABB1,于是CA1D为直线A1C与平面A1ABB1所成的角由题设,CA1D45,所以A1DCDAB.在RtAA1D中,AA1,所以FCAA1.故三棱锥FAEC的体积VSAECFC.点评:本题考查平面与平
10、面垂直的判定,直线与平面所成的角,三棱锥体积的求法,正确运用判定定理、体积公式是求解的关键规律总结空间中的平行与垂直关系这部分知识概念性比较强,是每一年高考考查立体几何的重点,试题特点是融推理论证于几何量的计算中,以推理论证为主;融线面关系于立体图形中,以线面的分析为主,试题主要体现了立体几何的通性通法,突出了化归、转化等思想方法的考查在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,无论是试题本身的已知条件,还是在具体的解题中,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式证明线线
11、垂直,也可以根据已知的垂直关系证明线线垂直,其中要特别重视两个平面垂直的性质定理,这个定理已知的是两个平面垂直,结论是线面垂直变式训练【21】 (2015湖北卷)九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马PABCD中,侧棱PD底面ABCD,且PDCD,点E是PC的中点,连接DE,BD,BE. (1)证明:DE平面PBC. 试判断四面体EBCD是否为鳖臑?若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(2)记阳马PABCD的体积为V1,四面体EBCD的体积为V2,求的值解析:(1)证明:因为PD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 状元桥 状元 数学 二轮 复习 教师 专题 十一 空间 直线 平面 之间 位置 关系
链接地址:https://www.31ppt.com/p-4233350.html