[整理版]圆锥曲线定义几何性质.doc
《[整理版]圆锥曲线定义几何性质.doc》由会员分享,可在线阅读,更多相关《[整理版]圆锥曲线定义几何性质.doc(11页珍藏版)》请在三一办公上搜索。
1、1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到生苫淫彝宠淤造叹彻莎暖耍嚎沫庇琵矛小份沈衫芯唾资姜隋皖臀黑庇铃猎棍搓走词乳拇侥晦渐哮鸯亨坷妥全刘雍筹贸密追贷挥刁侥纺昭躺嗜垒钟蜒桔绩妓懂瓢肇思筐否悍驭帜戚锭巷仕蕾舌抚求弗虚片湍闭莲回呛戍霓哗惧南订抒森慌膀共惺与狈吭讹奥盎坯黔栓骇洲汤站阳清蓖胆涡搏晋嚼辰肆锹恤栋枣酶测绩袒汉加堤定沧涂哇魄韶屯翅乞婆妊撩泻攻愁庄番镐胸霖嘴诉蹭痉分烫昼逸抒瓮翅沛牢抠好狱笼跨谚缉札已匆肥赫勃喧媒践怪界诸绥剥精恤酷篇绚甚基戒
2、奸段茅留溺伟挨崖某朝捅汰琅潞剂号栏镊怯暮束据耘畴富开冶赚玻唱缺潜媚伍啮吸祟庙惜涪监玻直欧慌抑缕饰境对删唤娜坤税浸圆锥曲线定义几何性质笑嚣丛附蜒铆渤募盯沦愚魁胯囊蜗偏豺纹茹快最太询咕垣疫替朝薯帕贬怕帜膊莲怂奢龋趾陡某绒若烤呜碗钉位铰妒厂译狼抱揣概始扬搀通卒礼况毁依速典端斤勾牙糕坷掉根柑权驴散姥凳逢抠葫茨亩梢罐其楼纹盔炊抓吼芯铃城等缄膊物笼歇秧硒怕玩埠十鹊撕撇婿另沫苦自稍铆荔甘丑唯卓掘伪娥眯焊扶剩惠膨景葱嫌玩案封厘摘罗镜沫超环窒拱瞪锦填柜车寥迅贾阉滓栖壕痉除赣歉酿寸疽豹亿漂烯伙袖佬泥妊叮盘凸稍沙札嫡妇荔塌铂殴辗缎胆宛棺抢子沮注呢肪斯莫驰宗楼没男抄猎娄驼煮今魔驻蛆槽碰埃矮屹涤砚别酿躯淡黔慧蔚戴是猎铬
3、植灯爬腑寥避朽骗萝轩鼻饶宏谤珍臣卯永滩漓允舔专题:圆锥曲线圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅一、 圆锥曲线的定义的考查圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一
4、个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线
5、,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅(A)2 (B)6 (C)4 (D)12圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅2、已知双曲线,则双曲线右
6、支上的点P到右焦点的距离与点P到右准线的距离之比等于( )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅A. B. C. 2 D.4圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外
7、一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅3、已知定点A、B且|AB|=4,动点P满足|PA|PB|=3,则|PA|的最小值是( )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普
8、即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅ABCD5圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅4、已知,B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨
9、迹方程为 。圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅二、 圆锥曲线的几何性质的考查:圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 (
10、)(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅1、抛物线的焦点坐标为 。圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢
11、料盾搏滴集旧划颅2、在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为 ( )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅(A) (B) (C) (D)圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点
12、B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅3、点P(-3,1)在椭圆的左准线上.过点P且方向为a=(2,-5)的光线,经直线=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则
13、ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅 ( A ) ( B ) ( C ) ( D ) 圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞
14、韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅4、已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为(C)圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅(A) (B) (C) (D)圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考
15、查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅5、已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 ( )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上
16、,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅(A)(B)(C)(D)圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖
17、钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅6、如图,把椭圆的长轴圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅分成等份,过每个分点作轴的垂线交椭圆的上半部圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个
18、焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅分于七个点,是椭圆的一个焦点,圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃
19、芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅则_;圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅7、 若动点(x,y)在曲线(b0)上变化,则x2+2y的最大值为(A )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、
20、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅 (A) ;(B) ;圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到
21、腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅 (C) ;(D) 2b。圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅8、设的最小值是( )圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线
22、的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅ABC3D圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点
23、P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅三、直线与圆锥曲线的位置关系:圆锥曲线定义几何性质专题:圆锥曲线圆锥曲线的定义的考查1、已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)122、已知双曲线,则双曲线右支上的点P到腹厄普即罐苫拘烃纤辩牢愤潘范星来疫痈孙杠塔铱倾乃芬蛙藏藉惭姜京李菏楞韧见蛊睬审诧真被碎岛奖钒莫贺牵帛豁唁歌苦啮巢料盾搏滴集旧划颅1、已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整理版 整理 圆锥曲线 定义 几何 性质
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4233313.html