最新题库大全高考数学(理)试题分项专题08立体几何.doc
《最新题库大全高考数学(理)试题分项专题08立体几何.doc》由会员分享,可在线阅读,更多相关《最新题库大全高考数学(理)试题分项专题08立体几何.doc(28页珍藏版)》请在三一办公上搜索。
1、专题08 立体几何一、选择题1(全国理7题)如图,正四棱柱中,则异面直线所成角的余弦值为( D )A B C D2(全国理7题)已知正三棱柱ABCA1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于( A )A B C D3(北京理3题)平面平面的一个充分条件是(D)A存在一条直线 B存在一条直线C存在两条平行直线D存在两条异面直线4(安徽理2题)设,均为直线,其中,在平面内,“”是且“”的()A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件7(福建理10题)顶点在同一球面上的正四棱柱ABCDA1B1C1D1中,AB1,AA1,则A、C两点间
2、的球面距离为( B )A B C D 9(湖南理8题)棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( D )A B C D10(江苏理4题)已知两条直线,两个平面,给出下面四个命题: 其中正确命题的序号是( C )A B C D11(江西理7题)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H则以下命题中,错误的命题是( D ) A点H是A1BD的垂心 BAH垂直平面CB1D1 CAH的延长线经过点C1 D直线AH和BB1所成角为4512(辽宁理7题)若是两条不同的直线,是三个不同的平面,则下列命题中的真命题是( )A若,则B若,则C
3、若,则D若,则13(陕西理6题)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( B ) A B C D 14(四川理4题)如图,ABCD-A1B1C1D1为正方体,下面结论错误的是( D )ABD平面CB1D1 BAC1BDCAC1平面CB1D1 D异面直线AD与CB1角为60 2020正视图20侧视图101020俯视图15(宁夏理8题) 已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(B) 若,则 若,则18(浙江理6题)若P是两条异面直线外的任意一点,则( B )A过点P有且仅有一条直线与都平行
4、 B过点P有且仅有一条直线与都垂直C过点P有且仅有一条直线与都相交 D过点P有且仅有一条直线与都异面二、填空题19(全国理16题)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上。已知正三棱柱的底面边长为2,则该三角形的斜边长为 。23(辽宁理15题)若一个底面边长为,棱长为的正六棱柱的所有顶点都在一个平面上,则此球的体积为 26(天津理12题)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为27(浙江理16题)已知点O在二面角的棱上,点P在内,且。若对于内异于O的任意一点Q,都有,则二面角的大小是_。三、解答题27(全国理19题)四棱锥S
5、ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD。已知ABC45,AB2,BC=2,SASB。()证明:SABC;()求直线SD与平面SAB所成角的大小;连结,得的面积设到平面的距离为,由于,得,解得设与平面所成角为,则所以,直线与平面所成的我为解法二:()作,垂足为,连结,由侧面底面,得平面因为,所以又,为等腰直角三角形,DBCAS如图,以为坐标原点,为轴正向,建立直角坐标系,所以()取中点,连结,取中点,连结,与平面内两条相交直线,垂直所以平面,与的夹角记为,与平面所成的角记为,则与互余,所以,直线与平面所成的角为28(全国理19题)如图,在四棱锥S-ABCD中,底面ABCD为
6、正方形,侧棱SD底面ABCD,E、F分别是AB、SC的中点。()求证:EF平面SAD;()设SD = 2CD,求二面角AEFD的大小;解法一:(1)作交于点,则为的中点连结,又,故为平行四边形,又平面平面所以平面(2)不妨设,则为等腰直角三角形取中点,连结,则又平面,所以,而,AAEBCFSDGMyzx所以面取中点,连结,则连结,则故为二面角的平面角所以二面角的大小为解法二:(1)如图,建立空间直角坐标系设,则,取的中点,则平面平面,所以平面(2)不妨设,则中点又,所以向量和的夹角等于二面角的平面角所以二面角的大小为29(北京理16题)如图,在中,斜边可以通过以直线为轴旋转得到,且二面角是直二
7、面角动点的斜边上(I)求证:平面平面;(II)当为的中点时,求异面直线与所成角的大小;(III)求与平面所成角的最大值解法一:(I)由题意,是二面角是直二面角,又二面角是直二面角,又,平面,又平面平面平面(II)作,垂足为,连结(如图),则,是异面直线与所成的角在中,又在中,异面直线与所成角的大小为(III)由(I)知,平面,是与平面所成的角,且当最小时,最大,这时,垂足为,与平面所成角的最大值为解法二:(I)同解法一(II)建立空间直角坐标系,如图,则,异面直线与所成角的大小为分析:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能
8、力满分12分解答:解法一:()取中点,连结为正三角形,ABCDOF正三棱柱中,平面平面,平面连结,在正方形中,分别为的中点,在正方形中,平面()设与交于点,在平面中,作于,连结,由()得平面,为二面角的平面角在中,由等面积法可求得,又,所以二面角的大小为()中,在正三棱柱中,到平面的距离为设点到平面的距离为由得,点到平面的距离为解法二:()取中点,连结为正三角形,在正三棱柱中,平面平面,平面取中点,以为原点,的方向为轴的正方向建立空间直角坐标系,则,令得为平面的一个法向量由()知平面,为平面的法向量,二面角的大小为()由(),为平面法向量,点到平面的距离32(广东理19题)如图6所示,等腰AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 题库 大全 高考 数学 试题 专题 08 立体几何
链接地址:https://www.31ppt.com/p-4231065.html