新高考数列主题复习及历数列题总结.doc
《新高考数列主题复习及历数列题总结.doc》由会员分享,可在线阅读,更多相关《新高考数列主题复习及历数列题总结.doc(19页珍藏版)》请在三一办公上搜索。
1、数列部分专题复习一、新高考数列地位数列是衔接初等数学与高等数学的桥梁,在高考中的地位举足轻重,近年来的新课标高考都把数列作为核心内容来加以考查,并且创意不断,常考常新了解高考中数列问题的命题规律,掌握高考中关于数列问题的热点题型的解法,针对性地开展数列知识的复习和训练,对于在高考中取得理想的成绩具有十分重要的意义.考纲对数列的考查呈现出综合性强、立意新、难度大的特点,注重在知识交汇点设计题目,常常与函数、方程、不等式、三角变换、导数、解析几何、推理与证明以及数学归纳法等有机地结合在一起.二、数列知识网络体概念数列表示等差数列与等比数列的类比解析法:anf (n)通项公式图象法列表法递推公式等差
2、数列通项公式求和公式性质判断ana1(n1)dana1qn1anamaparanamapar前n项和Sn前n项积(an0)Tn常见递推类型及方法逐差累加法逐商累积法构造等比数列anan1anf (n)f (n)an1panq化为=1转为an + 1panqn等比数列an0,q0Sn公式法:应用等差、等比数列的前n项和公式分组求和法倒序相加法裂项求和法错位相加法常见求和方法数列是特殊的函数四、数列基本知识一数列的概念:数列是一个定义域为正整数集N*(或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应函数的解析式。如(1)已知,则在数列的最大项为_(答:);二等差数列的有关概念:1
3、等差数列的判断方法:定义法或。2等差数列的通项:或。3等差数列的前和:,。如(1)已知数列 的前n项和,求数列的前项和(答:).4等差中项:若成等差数列,则A叫做与的等差中项,且。提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为,(公差为);偶数个数成等差,可设为,,(公差为2)三等差数列的性质:1当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.2若公差,则为递增等差数列,若公差,则为递
4、减等差数列,若公差,则为常数列。3当时,则有,特别地,当时,则有. 4若、是等差数列,则、 (、是非零常数)、 ,也成等差数列,而成等比数列;若是等比数列,且,则是等差数列. 5在等差数列中,当项数为偶数时,;项数为奇数时,(这里即);。6若等差数列、的前和分别为、,且,则.如设与是两个等差数列,它们的前项和分别为和,若,那么_(答:)7“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。上述两种
5、方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如(1)等差数列中,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若是等差数列,首项,则使前n项和成立的最大正整数n是 (答:4006)8如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究.四等比数列的有关概念:1等比数列的判断方法:定义法,其中或。2等比数列的通项:或。3等比数列的前和:当时,;当时,。特别提醒:等比数列前项和公式有两种形式,为此在求等比数
6、列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。4等比中项:若成等比数列,那么A叫做与的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个。如已知两个正数的等差中项为A,等比中项为B,则A与B的大小关系为_(答:AB)提醒:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为,(公比为);但偶数个数成等比时,不能设为,因公比不一定为正数,只有公比
7、为正时才可如此设,且公比为。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)5.等比数列的性质:(1)当时,则有,特别地,当时,则有. (2) 若是等比数列,则、成等比数列;若成等比数列,则、成等比数列; 若是等比数列,且公比,则数列 ,也是等比数列。当,且为偶数时,数列 ,是常数数列0,它不是等比数列. (3)若,则为递增数列;若, 则为递减数列;若 ,则为递减数列;若, 则为递增数列;若,则为摆动数列;若,则为常数列.(4) 当时,这里,但,这是等比数列前项和公式的一
8、个特征,据此很容易根据,判断数列是否为等比数列。 (5)如果数列既成等差数列又成等比数列,那么数列是非零常数数列,故常数数列仅是此数列既成等差数列又成等比数列的必要非充分条件。如设数列的前项和为(), 关于数列有下列三个命题:若,则既是等差数列又是等比数列;若,则是等差数列;若,则是等比数列。这些命题中,真命题的序号是 (答:)五.数列的通项的求法:公式法:等差数列通项公式;等比数列通项公式。已知(即)求,用作差法:。已知求,用作商法:。如数列中,对所有的都有,则_(答:)若求用累加法:。如已知数列满足,则=_(答:)已知求,用累乘法:。如已知数列中,前项和,若,求(答:)已知递推关系求,用构
9、造法(构造等差、等比数列)。特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求。如已知,求(答:);已知,求(答:);(2)形如的递推数列都可以用倒数法求通项。如已知,求(答:);已知数列满足=1,求(答:)注意:(1)用求数列的通项公式时,你注意到此等式成立的条件了吗?(,当时,);(2)一般地当已知条件中含有与的混合关系时,常需运用关系式,先将已知条件转化为只含或的关系式,然后再求解。如数列满足,求(答:)六.数列求和的常用方法:1公式法:等差数列求和公式;等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;
10、常用公式:,.2分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. 如求:(答:)3倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法). 如已知,则_(答:)4错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前和公式的推导方法). 如(1)设为等比数列,已知,求数列的首项和公比;求数列的通项公式.(答:,;);(2)设函数,数列满足:,求证:数列是等比数列;令,求函数在点处
11、的导数,并比较与的大小。(答:略;,当时,;当时,)5裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:; ;,; ;.如(1)求和: (答:);(2)在数列中,且S,则n_(答:99);6通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。如求数列14,25,36,前项和= (答:);求和: (答:)三、高考数列题型分析(一)近三年高考数列内容分布统计表年号题号分值重点考察的知识点及知识点交汇情况所占比例2010理85本题难度适中,考查了与的关系、等比数列和极限文8%理11.3%文20理211212文:本题难度
12、适中,考察了基本量求等差数列的通项、差比数列的求和理:本题难度适中,考查了赋值求项、等差数列的证明、差比数列的求和2011文9理85文:9题难度适中,考查了与的关系及等比数列的相关知识理:8题难度适中,考查了基本量运算求等差数列通项、前n项和公式及累加法11.3%文20理2012文:本题难度适中,考察了基本量的运算、等差数列的证明理:本题难度适中,考查了组合数性质,等比数列相关知识,差比数列的求和2012文12理12,16文5理5+5文:12题难度很大,考查了等差数列性质及函数的变形,考察构造新函数的能力和转化化归能力理:12题难度很大,考查了等差数列的性质及三角函数公式,同时考察了化归思想和
13、逻辑推理能力16题难度很大,考查了直觉猜想、合理估算、反例构造、演绎推理等方法,不容易寻找到解题的切入点,特殊值列举是很有效的解决办法.文20.7%理24%文20,22理20,22文12+14理12+14文:20题难度适中,考查了与的关系及递推公式求通项 、数列前n项和的最值22题与理科类似,难度大理:20题难度适中,考查了赋值求项 、与 的关系 、数列前n项和的最值22题属于高档题,难度大,考查了导数的应用、不等式、数列等基础知识;考查了思维能力、运算能力、分析问题与解决问题的能力和创新意识能力;又深层次的考查了函数、转换与化归、特殊与一般等数学思维方法.需要考生具备扎实的数学基础和解决数学
14、问题的能力.(二)2010-2012年高考数列内容分析及2013年高考题型预测数列在高考中基本上是一小一大,小题为中难度题,大题几乎都为综合题。内容:1、关于等差、等比数列的基本量问题,一般是求项、求和;2、通过递推或探索来判断数列及其性质的问题,常用的方法有构造、累加、累乘法;3、数列与函数、方程、不等式、导数、解几等的综合问题;如果数列问题出现在最后一两题,必定是综合性很强的问题,大多以数列为考查平台,综合运用函数、方程、不等式、简单数论等知识,通过运用递推、函数与方程、归纳与猜想、等价转化、分类整合等各种数学思想方法,考查学生灵活运用数学知识分析问题、解决问题的能力和数学探索创新的能力.
15、2013年新课标高考数列新题型预计会具有一定的探究性和开放性,可能出现数列解决实际应用问题。题目特点:1、没有给出条件,或者没有给出足够的条件,需要考生自己去寻找出充分条件或充要条件;2、没有给出结论,或者没有确定的结论,需要考生自己去探求结论;3、给出的信息比较生疏,比较新颖,或所给知识没有学习过,需要考生自己去理解,筛选;4、给出一个特殊的情形或类似的问题,需要考生自己去归纳、联想、类比;(三)高考基本题型与基本策略示例基本题型一:运用基本量思想解决等差、等比数列的求项求和问题例. (2011四川文20)已知是以a为首项,q为公比的等比数列,为它的前n项和()当、成等差数列时,求q的值;(
16、)当、成等差数列时,求证:对任意自然数k,、也成等差数列解:()由已知,当、成等差数列时,即化简得解得()若,则的每项,此时、显然成等差数列若,由、成等差数列可得,即整理得因此,说明:此题考查等比数列和等差数列的基础知识以及基本量运算能力和分析问题、解决问题的能力变式:(1)(2011辽宁理17) 已知等差数列an满足.求数列的通项公式;求数列的前n项和说明:1、此题是典型的运用基本量思想求数列通项的问题,列出关于的方程两个二元一次方程构成的方程组,通过加减消元或带入消元接出的值;2、数列是一个差比数列,错位相减法求和变式:(2010全国卷理科数学4)已知各项均为正数的等比数列中,=5,=10
17、,则说明:表面看这是一道可以用基本量思想解决的问题,但在实际操作过程中发现,使用基本量列出方程组计算量较大,要得到结果还需借助指数幂的运算性质,易出错.如果联想等比数列性质,不难发现,运用性质可以很快求出基本策略:等差、等比数列是两类最基本的数列,它们的通项公式、前n项和的公式中均含有两个基本量,因此数通过基本量思想求解等差等比的通项和前n项和是高考考查的重点也是热点.在运用基本量思想解决问题时,要注意以下两个方面:1、基本量思想在解决问题时比较程序化,认真审题选择恰当的方法是关键,有两个性质有时可以简化计算在等差数列中,若则;在等比数列中若则;等差中项和等比中项。2、等差、等比数列的求和,需
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新高 数列 主题 复习 历数 总结
链接地址:https://www.31ppt.com/p-4230943.html