普通高等学校招生全国统一考试理科数学(课标全国卷).doc
《普通高等学校招生全国统一考试理科数学(课标全国卷).doc》由会员分享,可在线阅读,更多相关《普通高等学校招生全国统一考试理科数学(课标全国卷).doc(9页珍藏版)》请在三一办公上搜索。
1、课标全国(理)1.(2012课标全国,理1)已知集合A=1,2,3,4,5,B=(x,y)|xA,yA,x-yA,则B中所含元素的个数为().A.3B.6C.8D.10D由xA,yA得x-yA,得(x,y)可取如下:(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),故集合B中所含元素的个数为10.2.(2012课标全国,理2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有().A.12种B.10种C.9种D.8种A将4名学生均分为2个小组共有=3种
2、分法,将2个小组的同学分给两名教师带有=2种分法,最后将2个小组的人员分配到甲、乙两地有=2种分法,故不同的安排方案共有322=12种.3.(2012课标全国,理3)下面是关于复数z=的四个命题:p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为-1,其中的真命题为().A.p2,p3B.p1,p2C.p2,p4D.p3,p4Cz=-1-i,故|z|=,p1错误;z2=(-1-i)2=(1+i)2=2i,p2正确;z的共轭复数为-1+i,p3错误;p4正确.4.(2012课标全国,理4)设F1,F2是椭圆E:+=1(ab0)的左、右焦点,P为直线x=上一点,F2P
3、F1是底角为30的等腰三角形,则E的离心率为().A.B.C.D.C设直线x=与x轴交于点M,则PF2M=60,在RtPF2M中,PF2=F1F2=2c,F2M=-c,故cos 60=,解得=,故离心率e=.5.(2012课标全国,理5)已知an为等比数列,a4+a7=2,a5a6=-8,则a1+a10=().A.7B.5C.-5D.-7Dan为等比数列,a5a6=a4a7=-8,联立可解得或当时,q3=-,故a1+a10=+a7q3=-7;当时,q3=-2,同理,有a1+a10=-7.6.(2012课标全国,理6)如果执行下边的程序框图,输入正整数N(N2)和实数a1,a2,aN,输出A,B
4、,则().A.A+B为a1,a2,aN的和B.为a1,a2,aN的算术平均数C.A和B分别是a1,a2,aN中最大的数和最小的数D.A和B分别是a1,a2,aN中最小的数和最大的数C随着k的取值不同,x可以取遍实数a1,a2,aN,依次与A,B比较,A始终取较大的那个数,B始终取较小的那个数,直到比较完为止,故最终输出的A,B分别是这N个数中的最大数与最小数.7.(2012课标全国,理7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为().A.6B.9C.12D.18B由三视图可推知,几何体的直观图如下图所示,可知AB=6,CD=3,PC=3,CD垂直平分A
5、B,且PC平面ACB,故所求几何体的体积为3=9.8.(2012课标全国,理8)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为().A.B.2C.4D.8C设双曲线的方程为-=1,抛物线的准线为x=-4,且|AB|=4,故可得A(-4,2),B(-4,-2),将点A坐标代入双曲线方程得a2=4,故a=2,故实轴长为4.9.(2012课标全国,理9)已知0,函数f(x)=sin在单调递减,则的取值范围是().A.B.C.D.(0,2A结合y=sin x的图像可知y=sin x在单调递减,而y=sin=sin,可知y=sin x的图
6、像向左平移个单位之后可得y=sin的图像,故y=sin在单调递减,故应有,解得.10.(2012课标全国,理10)已知函数f(x)=,则y=f(x)的图像大致为().B当x=1时,y=-1,故-1x0时,f(x)0,故y=f(x)在(-1,0)上单调递减,故选B.11.(2012课标全国,理11)已知三棱锥S-ABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为().A.B.C.D.ASC是球O的直径,CAS=CBS=90.BA=BC=AC=1,SC=2,AS=BS=.取AB的中点D,显然ABCD,ABSD,AB平面SCD.在CDS中,C
7、D=,DS=,SC=2,利用余弦定理可得cosCDS=-,故sinCDS=,SCDS=,V=VB-CDS+VA-CDS=SCDSBD+SCDSAD=SCDSBA=1=.12.(2012课标全国,理12)设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为().A.1-ln 2B.(1-ln 2)C.1+ln 2D.(1+ln 2)B由题意知函数y=ex与y=ln(2x)互为反函数,其图像关于直线y=x对称,两曲线上点之间的最小距离就是y=x与y=ex最小距离的2倍,设y=ex上点(x0,y0)处的切线与y=x平行,有=1,x0=ln 2,y0=1,y=x与y=ex的最小距
8、离是(1-ln 2),|PQ|的最小值为(1-ln 2)2=(1-ln 2).13.(2012课标全国,理13)已知向量a,b夹角为45,且|a|=1,|2a-b|=,则|b|=.3a,b的夹角为45,|a|=1,ab=|a|b|cos 45=|b|,|2a-b|2=4-4|b|+|b|2=10,|b|=3.14.(2012课标全国,理14)设x,y满足约束条件则z=x-2y的取值范围为.-3,3作出不等式组的可行域,如图阴影部分,作直线l0:x-2y=0,在可行域内平移知过点A时,z=x-2y取得最大值,过点B时,z=x-2y取最小值.由得B点坐标为(1,2),由得A点坐标为(3,0).zm
9、ax=3-20=3,zmin=1-22=-3.z-3,3.15.(2012课标全国,理15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为.设元件1,2,3的使用寿命超过1 000小时的事件分别记为A,B,C,显然P(A)=P(B)=P(C)=,该部件的使用寿命超过1 000的事件为(A+B+AB)C.该部件的使用寿命超过1 000小时的概率为P=+=.16.(2012课标全国,理16)
10、数列an满足an+1+(-1)nan=2n-1,则an的前60项和为.1 830an+1+(-1)nan=2n-1,a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1,a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12=23-a1,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1,a1+a2+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+(a57+a58+a59+a60)=10+26+42+234=1 830.17.(2012课标全国,理17)已知a,b,c分别为ABC三个内角A,B,C
11、的对边,acos C+asin C-b-c=0.(1)求A;(2)若a=2,ABC的面积为,求b,c.解:(1)由acos C+asin C-b-c=0及正弦定理得sin Acos C+sin Asin C-sin B-sin C=0.因为B=-A-C,所以sin Asin C-cos Asin C-sin C=0.由于sin C0,所以sin=.又0A,故A=.(2)ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.18.(2012课标全国,理18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 普通高等学校 招生 全国 统一 考试 理科 数学 全国卷

链接地址:https://www.31ppt.com/p-4230505.html