高考文科数学试题分类汇编二、函数与导数.doc
《高考文科数学试题分类汇编二、函数与导数.doc》由会员分享,可在线阅读,更多相关《高考文科数学试题分类汇编二、函数与导数.doc(28页珍藏版)》请在三一办公上搜索。
1、二、函数与导数(一)选择题(辽宁文)(11)函数的定义域为,对任意,则的解集为 (A)(,1) (B)(,+) (C)(,)(D)(,+)(重庆文)3曲线在点(1,2)处的切线方程为 A BC D(重庆文)6设的大小关系是 ABCD(重庆文)7若函数在处取最小值,则 A B C3 D4(辽宁文)(6)若函数为奇函数,则a= (A) (B) (C) (D)1(上海文)15下列函数中,既是偶函数,又是在区间上单调递减的函数为答A B C D(全国新课标文)(3)下列函数中,既是偶函数又在单调递增的函数是 (A) (B) (C) (D)(全国新课标文)(10)在下列区间中,函数的零点所在的区间为 (
2、A) (B) (C) (D)(全国新课标文)(12)已知函数的周期为2,当时,那么函数的图象与函数的图象的交点共有A(A)10个 (B)9个 (C)8个 (D)1个(全国大纲文)10设是周期为2的奇函数,当0x1时,=,则= A- B C D(湖北文)3若定义在R上的偶函数和奇函数满足,则= AB CD(福建文)6若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是 A(-1,1) B(-2,2) C(-,-2)(2,+) D(-,-1)(1,+)(福建文)8已知函数f(x)=。若f(a)+f(1)=0,则实数a的值等于 A-3 B-1 C1 D3(福建文)10若a0,b
3、0,且函数f(x)=在x=1处有极值,则ab的最大值等于 A2 B3C6 D9(山东文)3.若点(a,9)在函数的图象上,则tan=的值为(A)0 (B) (C) 1 (D) (山东文)4.曲线在点P(1,12)处的切线与y轴交点的纵坐标是 (A)-9 (B)-3 (C)9 (D)15(山东文)10函数的图象大致是C(陕西文)4. 函数的图像是 ( ) (陕西文)6.方程在内 ( )(A)没有根 (B)有且仅有一个根(C) 有且仅有两个根 (D)有无穷多个根 (四川文)4函数的图象关于直线y=x对称的图象像大致是 (四川文)11在抛物线上取横坐标为,的两点,过这两点引一条割线,有平行于该割线的
4、一条直线同时与抛物线和圆相切,则抛物线顶点的坐标为(A)(B)(C)(D) (天津文)5已知则AB C D (天津文)8对实数,定义运算“”:设函数。若函数的图象与轴恰有两个公共点,则实数的取值范围是( )ABCD-2,-1 (浙江文)(10)设函数,若为函数的一个极值点,则下列图象不可能为的图象是(江西文)3.若,则的定义域为( )A. B. C. D. (江西文)4.曲线在点A(0,1)处的切线斜率为( )A.1 B.2 C. D. (湖南文)7曲线在点处的切线的斜率为( )A B C D (湖南文)8已知函数若有则的取值范围为A B C D (北京文)(3)如果,那么(A) (B) (C
5、) (D) (北京文)(7)某车间分批生产某种产品,每批的生产准备费用为800元。若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元。为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 (A)60件 (B)80件 (C)100件 (D)120件(安徽文)(5)若点(a,b)在 图像上,,则下列点也在此图像上的是D(A)(,b) (B)(10a,1b) (C) (,b+1)(D)(a2,2b) (安徽文)(10)函数在区间0,1上的图像如图所示,则n可能是A(A)1 (B)2 (C)3 (D)4 (广东文)4函数的定义域是A B C D4(C)且,则的定义域是(广东
6、文)10设是上的任意实值函数,如下定义两个函数和:对任意,;,则下列等式恒成立的是ABCD10(B)对A选项 ,故排除A对B选项 ,故选B对C选项 ,故排除C对D选项 ,故排除D(天津文)8对实数,定义运算“”:设函数。若函数的图象与轴恰有两个公共点,则实数的取值范围是( B )ABCD-2,-1(二)填空题(辽宁文)(16)已知函数有零点,则的取值范围是_(山东文)16.已知函数=当2a3b4时,函数的零点 .【答案】5【解析】方程=0的根为,即函数的图象与函数的交点横坐标为,且,结合图象,因为当时,此时对应直线上的点的横坐标;当时, 对数函数的图象上点的横坐标,直线的图象上点的横坐标,故所
7、求的.(上海文)3若函数的反函数为,则 。(上海文)14设是定义在上以1为周期的函数,若在上的值域为,则在区间上的值域为 。(四川文)16函数的定义域为A,若且时总有,则称为单函数例如,函数=2x+1()是单函数下列命题:函数(xR)是单函数;指数函数(xR)是单函数;若为单函数,且,则;在定义域上具有单调性的函数一定是单函数其中的真命题是_(写出所有真命题的编号)答案:解析:对于,若,则,不满足;是单函数;命题实际上是单函数命题的逆否命题,故为真命题;根据定义,命题满足条件(陕西文)11设,则_.【分析】由算起,先判断的范围,是大于0,还是不大于0,;再判断作为自变量的值时的范围,最后即可计
8、算出结果【解】,所以,即【答案】(浙江文)(11)设函数 ,若,则实数=_【答案】1 【解析】,.(湖南文)12已知为奇函数, 答案:6解析:,又为奇函数,所以。(湖南文)16、给定,设函数满足:对于任意大于的正整数,(1)设,则其中一个函数在处的函数值为 ;(2)设,且当时,则不同的函数的个数为 。答案:(1),(2)16解析:(1)由题可知,而时,则,故只须,故。(2)由题可知,则,而时,即,即,由乘法原理可知,不同的函数的个数为。(湖北文)15里氏震级M的计算公式为:,其中A是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅。假设在一次地震中,测震仪记录的最大振幅是1000,此时标
9、准地震的振幅为0.001,则此次地震的震级为 6 级;9级地震的最大振幅是5级地震最大振幅的 10000 倍。(北京文)13已知函数若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是_【答案】(0,1)【解析】单调递减且值域为(0,1,单调递增且值域为,有两个不同的实根,则实数k的取值范围是(0,1)。 (广东文)12设函数若,则 12,即,则(安徽文)(11)设是定义在R上的奇函数,当x0时,=,则 3 .(11)3【命题意图】本题考查函数的奇偶性,考查函数值的求法.属中等难度题.【解析】.(安徽文)(13)函数的定义域是 (3,2) . (13)(3,2)【命题意图】本题考
10、查函数的定义域,考查一元二次不等式的解法.【解析】由可得,即,所以.(三)解答题(安徽文)(18)(本小题满分13分)设,其中为正实数.()当时,求的极值点;()若为上的单调函数,求的取值范围.(18)(本小题满分13分)本题考查导数的运算,极值点的判断,导数符号与函数单调变化之间的关系,求解二次不等式,考查运算能力,综合运用知识分析和解决问题的能力.解:对求导得 (I)当,若综合,可知+00+极大值极小值所以,是极小值点,是极大值点.(II)若为R上的单调函数,则在R上不变号,结合与条件a0,知在R上恒成立,因此由此并结合,知(北京文)(18)(本小题共13分) 已知函数。()求的单调区间;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学试题 分类 汇编 函数 导数
链接地址:https://www.31ppt.com/p-4230017.html