《高考数学二轮专题突破训练(第1部分6套).doc》由会员分享,可在线阅读,更多相关《高考数学二轮专题突破训练(第1部分6套).doc(43页珍藏版)》请在三一办公上搜索。
1、测验、考试成绩录入(登分)的不可少工具.Excel登分王(免费)2009届高考数学二轮专题突破训练(第1部分6套)2009届高考数学二轮专题突破训练概率与统计一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的1、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )分数54321人数2010303010ABC3D w.w.w.k.s.5.u.c.o.2 从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )ABCD3、已知随机变量服从正态分布N(3,a2),则 A.B.C.D.4、某一批
2、花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是A.B. C. D. 5、某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.486、某校共有学生2000名,各年级男、女生人数如表已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C )A24 B18 C16 D12 一年级二年级三年级女生373男生3773707、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数
3、的概率为( )A B C D8、明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是( )A0.9 B0.95 C0.98 D0.979、电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为A B C D10、两位大学毕业生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是”,根据这位负责人的话可以推断出参加面试的人数为( ) A21 B35 C42 D
4、70611、一组数据的平均数是,方差是,若将这组数据中的每一个数据都加上,得到一组新数据,则所得新数据的平均数和方差分别是( ) A B C D 12、已知,若,则ABC是直角三角形的概率是( )A B C D二填空题:本大题共6个小题。把答案填在题中横线上。13、在平面直角坐标系中,从六个点:中任取三个,这三点能构成三角形的概率是_(结果用分数表示)14、为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 。15、已知总体的各个体的值由小到大依次为2,3,3,7,a,b
5、,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是_16、某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).17、一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 人18、从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:由以上
6、数据设计了如下茎叶图:甲乙31277550284542292587331304679403123556888553320224797413313673432356根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论:_三解答题:本大题共9个小题,解答应写出文字说明,证明过程或演算步骤。19、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组()求被选中的概率;()求和不全被选中的概率20、为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,
7、设为成活沙柳的株数,数学期望,标准差为。()求n,p的值并写出的分布列;()若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率21、甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者()求甲、乙两人同时参加岗位服务的概率;()求甲、乙两人不在同一个岗位服务的概率;()设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列22、随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元设1件产品的利润(单位:万元)为(1)求的分
8、布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?23、甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约。乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试合格的概率都是,且面试是否合格互不影响。求:()至少有1人面试合格的概率;()签约人数的分布列和数学期望.24、某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分已知某射手每次击中目标的概率为0.8,其
9、各次射击结果互不影响()求该射手恰好射击两次的概率;()该射手的得分记为,求随机变量的分布列及数学期望25、设进入某商场的每一位顾客购买甲种商品的概率位0.5,购买乙种商品的概率为0.6,且购买甲种商品与乙种商品相互独立,各顾客之间购买商品是相互独立的.()求进入该商场的1位顾客购买甲、乙两种商品中的一种的概率()求进入该商场的3位顾客中,至少有2位顾客既未购买甲种也未购买乙种商品的概率26、甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为()求乙投球的命中率;()求甲投球2次,至少命中1次的概率;()若甲、乙两人各投球2次,求两人共命中2次的概率27
10、、一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求:()从中任意摸出2个球,得到的都是黑球的概率;()袋中白球的个数。答案:一、选择题1、B 2、D 3、D 4、B 5、A 6、C 7、C 8、C 9、C 10、A 11、D 12、C二、填空题13、 14、13 15、10.5和10.5 16、216 17、1018、(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度)(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或:乙品种
11、棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定)甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大)(3)甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近)甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀三、解答题19解:()从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间,由18个基本事件组成由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的用表示“恰被选中”这一事件,则,事件由6个基本事件组成,因而()
12、用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于,事件有3个基本事件组成,所以,由对立事件的概率公式得20(1)由得,从而的分布列为0123456(2)记”需要补种沙柳”为事件A, 则 得 或 21解:()记甲、乙两人同时参加岗位服务为事件,那么,即甲、乙两人同时参加岗位服务的概率是()记甲、乙两人同时参加同一岗位服务为事件,那么,所以,甲、乙两人不在同一岗位服务的概率是()随机变量可能取的值为1,2事件“”是指有两人同时参加岗位服务,则所以,的分布列是1322解:(1)的所有可能取值有6,2,1,-2;,故的分布列为:621-20.630.250.10.02(2)(3
13、)设技术革新后的三等品率为,则此时1件产品的平均利润为依题意,即,解得所以三等品率最多为23解 用A,B,C分别表示事件甲、乙、丙面试合格。由题意知A,B,C相互独立,且P(A)P(B)P(C).()至少有1人面试合格的概率是()的可能取值为0,1,2,3. = = 所以, 的分布列是0123P的期望24()设该射手第次击中目标的事件为,则,()可能取的值为0,1,2,3 的分布列为01230.0080.0320.160.8.25解:()记A表示事件:进入该商场的1位顾客选购甲种商品;B表示事件:进入该商场的1位顾客选购乙种商品;C表示事件:进入该商场1位顾选购甲、乙两种商品中的一种。则C=(
14、A)+(B)P(C)=P(A+B)=P(A)+P(B)=P(A)P()+P()P(B)=0.50.4+0.50.6=0.5()记A2表示事件:进入该商场的3位顾客中恰有2位顾客既未选购甲种商品,也未选购乙种商品;A3表示事件:进入该商场的3位顾客中都未选购甲种商品,也未选购乙种商品;D表示事件:进入该商场的1位顾客未选购甲种商品,也未选购乙种商品;E表示事件:进入该商场的3位顾客中至少有2位顾客既未选购甲种商品,也未选购乙种商品。则D=P(D)=P()=P()P()=0.50.4=0.2P(A2)=0.220.8=0.096P(A3)=0.23=0.008P(E)=P(A2+A3)=P(A2)
15、+P(A3)=0.096+0.008=0.10426()解法一:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得,解得或(舍去),所以乙投球的命中率为解法二:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得,于是或(舍去),故所以乙投球的命中率为()解法一:由题设和()知,故甲投球2次至少命中1次的概率为解法二:由题设和()知,故甲投球2次至少命中1次的概率为()解:由题设和()知,甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中2次,乙2次均不中;甲2次均不中,乙中2次概率分别为,所以甲、乙两人各投球2次,共命中2次的概率为27()解:由题意知
16、,袋中黑球的个数为记“从袋中任意摸出两个球,得到的都是黑球”为事件A,则()解:记“从袋中任意摸出两个球,至少得到一个白球”为事件B。设袋中白球的个数为x,则得到 x=52009届高考数学二轮专题突破训练排列组合一、选择题:本大题共16小题,在每小题给出的四个选项中,只有一项是符合题目要求的1、某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( )w.w.w.k.s.5.u.c.o.A45种B56种C90种D120种2、若二项式展开式中含有常数项,则的最小取值是 ( )A 5 B 6
17、C 7 D 83、在展开式中,含的负整数指数幂的项共有( )A8项 B6项 C4项 D2项4、某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有( )A120种B48种C36种D18种5、从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有( )A24种 B36种 C48种 D60种6、有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同的
18、坐法种数是( )A.234 B.346 C.350 D.3637、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有种 种 种 种8、有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是A18 B26 C29D589、某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:序号123456节目如果A、B两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有 ( )A 192种B 144种C 96种D 72种10、在的展开式中,的系数为
19、 ( )A 120 B 120 C 15 D 1511、若,则= ( ) A32 B1 C-1 D-3212、设的展开式的各项系数之和为M, 二项式系数之和为N,若M-N240, 则展开式中x3的系数为A.-150 B.150 C.-500 D.50013、2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有()A.36种 B.108种
20、 C.216种 D.432种14、现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 ( )1416 1820 15、若的展开式中的系数是( ) A B C D16、甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式 ( )A.3360 种 B.2240种 C.1680种 D.1120种二填空题:本大题共15个小题。把答案填在题中横线上。17、从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女
21、同学的不同选法共有 种(用数字作答)18、展开式中的系数为_。19、从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有_种。20、的二项展开式中的系数为 (用数字作答)21、 有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行如果取出的4张卡片所标的数字之和等于10,则不同的排法共有 种(用数字作答)22、用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)。23、某校安排5个班到4个工厂进行社会
22、实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种(用数字作答)24、某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有_种。(以数字作答)25、要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为。26、将数字1,2,3,4,5,6拼成一列,记第个数为,若,则不同的排列方法有 种(用数字作答)27、展开式中含的整数次幂的项的系数之和为(用数字作答)28、的展开式中的第5项为常数项,那么正整数的值是 29、安排3名支教老师去6所学校任教,每校至多2人,则不同的分配
23、方案共有 种.(用数字作答)30、的展开式中的系数是 .(用数字作答)31、安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)三解答题:本大题共1个小题,解答应写出文字说明,证明过程或演算步骤。32、由0,1,2,3,4,5这六个数字。(1)能组成多少个无重复数字的四位数?(2)能组成多少个无重复数字的四位偶数?(3)能组成多少个无重复数字且被25个整除的四位数?(4)组成无重复数字的四位数中比4032大的数有多少个?答案:一、选择题1、A 2、C 3、C 4、C 5、C 6、B 7、B 8、D 9、B 10、C 11、A 12、B 13、C 14、C 15
24、、B 16、C二、填空题 17、420 18、2 19、140 20、10 21、432 22、40 23、240 24、25 25、288 26、30 27、72 28、8 29、210 30、40 31、60三、解答题解:(1) (2)(3)(4)w.w.w.k.s.5.u.c.o.m2009届高考数学二轮专题突破训练平面向量一、选择题:本大题共15题,在每小题给出的四个选项中,只有一项是符合题目要求的1、在平行四边形ABCD中,AC为一条对角线,若,,则( )A(2,4)B(3,5)C(3,5)D(2,4) w.w.w.k.s.5.u.c.o.m2 若过两点P1(-1,2),P2(5,6
25、)的直线与x轴相交于点P,则点P分有向线段所成的比的值为A.B. C. D. 3、在平行四边形中,与交于点是线段的中点,的延长线与交于点若,则( )A BCD4、设D、E、F分别是ABC的三边BC、CA、AB上的点,且 则与A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直5、已知O,A,B是平面上的三个点,直线AB上有一点C,满足,则( ) ABCD6、平面向量,共线的充要条件是( )A. ,方向相同B. ,两向量中至少有一个为零向量C. ,D. 存在不全为零的实数,7、在中,若点满足,则( )ABCD8、已知两个单位向量与的夹角为,则的充要条件是A. B.C. D.9、若,, 则(
26、)A(1,1) B(1,1) C(3,7) D(-3,-7) 10、已知平面向量,且/,则( )A、 B、 C、 D、11、设 =(1,2), =(3,4),c=(3,2),则 =A. B.0 C.3 D.1112、已知平面向量 =(1,3), =(4,2),与垂直,则是( )A. 1 B. 1 C. 2 D. 213、设平面向量A B. C. D.14、已知两个单位向量与的夹角为,则与互相垂直的充要条件是()A或B或C或D为任意实数二填空题:本大题共7小题。把答案填在题中横线上。15、设向量,若向量与向量共线,则 16、已知向量,且,则= _17、关于平面向量有下列三个命题:若,则若,则非零
27、向量和满足,则与的夹角为其中真命题的序号为(写出所有真命题的序号)18、若向量满足且与的夹角为,则_19、如图,在平行四边形中,则 .20、,的夹角为, 则 21、如图,正六边形中,有下列四个命题:ABCD其中真命题的代号是 (写出所有真命题的代号)22、已知平面向量,若,则 23、已知a是平面内的单位向量,若向量b满足b(a-b)=0,则|b|的取值范围是 答案:一、选择题1、B 2、A 3、B 4、A 5、A 6、D 7、A 8、C 9、B 10、B 11、C 12、A 13、A 14、C二、填空题15、2 16、3 17、 18、 19、3 20、7 21、A B D 22、 23、0,
28、12009届高考数学二轮专题突破训练-数列一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的1、设an是公比为正数的等比数列,若a1=7,a5=16,则数列an前7项和为( )A.63B.64C.127D.1282记等差数列的前项和为,若,则( )A16 B24 C36 D483、设等比数列的公比,前n项和为,则( )w.w.w.k.s.5.u.c.o.A. 2 B. 4 C. D. 4、已知是等差数列,则该数列前10项和等于( )A64 B100 C110 D1205、设等比数列的公比,前n项和为,则( )w.w.w.k.s.5.u.c.o. A. 2B. 4C
29、.D. 6、若等差数列的前5项和,且,则( )A12B13C14D157、等比数列中,公比,且,则等于( ) A B C D或8、已知数列满足,则=( )A0BC D9、已知等比数列中,则其前3项的和的取值范围是( )() ()() ()10、设等差数列的前项和为,若,则的最大值为( )A、3 B、4 C、5 D、61,3,511、若数列an的前n项由如图所示的流程图输出依次给出,则数列an的通项公式an=( ).AB Cn1 Dn12、已知数列对任意的满足,且,那么等于( )ABCD二填空题:本大题共4个小题。把答案填在题中横线上。13、设Sn是等差数列an的前n项和,a12=-8,S9=-
30、9,则S16= .14、设数列中,则通项_ 15、已知数列中,则 16、已知函数f(x)=2x,等差数列ax的公差为2,若 f(a2+a4+a6+a8+a10)=4,则log2f(a1)f(a2)f(a3)f(a10)= 三解答题:本大题共6个小题,解答应写出文字说明,证明过程或演算步骤。17、已知数列xn的首项x1=3,通项xn=2np-np(nN*,p,p为常数),且x1,x4,x5成等差数列,求:()p,q的值;()数列xn前n项和Sn的公式。18、已知数列是一个等差数列,且,。(1)求的通项;(2)求前n项和的最大值。19、设数列的前项和()求 ()证明:是等比数列()求的通项公式.2
31、0、数列是首项的等比数列,且,成等差数列,(1)求数列的通项公式;(2)若,设为数列的前项和,若对一切恒成立,求实数的最小值.22、设数列的前项和为已知,()设,求数列的通项公式;()若,求的取值范围在数列,中,a1=2,b1=4,且成等差数列,成等比数列()()求a2,a3,a4及b2,b3,b4,由此猜测,的通项公式,并证明你的结论;()证明:答案:一、选择题1、C 2、D 3、C 4、B 5、C 6、B 7、C 8、C 9、D 10、B 11、B 12、C二、填空题13、-72 14、 15、 16、6三、解答题17、解:()由p=1,q=1()18、解:()设的公差为,由已知条件,解出
32、,所以()所以时,取到最大值19、解:()()由题设和式知所以是首项为2,公比为2的等比数列()20、解:(1)当时,,不成等差数列。当时, , , , (2) , 又 ,的最小值为21、解:()依题意,即,由此得4分因此,所求通项公式为,6分()由知,于是,当时,当时,又综上,所求的的取值范围是22、解:()由条件得由此可得猜测用数学归纳法证明:当n=1时,由上可得结论成立假设当n=k时,结论成立,即,那么当n=k+1时,所以当n=k+1时,结论也成立由,可知对一切正整数都成立()n2时,由()知故综上,原不等式成立 w.w.w.k.s.5.u.c.o.m2009届高考数学二轮专题突破训练函
33、数一、选择题:本大题共15题,在每小题给出的四个选项中,只有一项是符合题目要求的1“函数存在反函数”是“函数在上为增函数”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件w.w.w.k.s.5.u.c.o.2 定义在上的函数满足(),则等于( )A2 B3 C6 D93已知函数,是的反函数,若(),则的值为( )A B1 C4 D104.设函数的反函数为,则( )A. 在其定义域上是增函数且最大值为1 B. 在其定义域上是减函数且最小值为0 C. 在其定义域上是减函数且最大值为1D. 在其定义域上是增函数且最小值为0 5.已知函数,则不等式的解集是( )A. B
34、. C. D. 6.已知函数是定义在R上的偶函数,且在区间上是增函数.令,则( ) A. B. C. D. 7.设函数的图象关于直线及直线对称,且时,则 ( ) A. B. C. D.8.命题“若函数在其定义域内是减函数,则”的逆否命题是( )A、若,则函数在其定义域内不是减函数B、若,则函数在其定义域内不是减函数C、若,则函数在其定义域内是减函数D、若,则函数在其定义域内是减函数9设函数 则( )A有最大值B有最小值C是增函数D是减函数10.设函数则的值为( A )A B C D11.若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法
35、一定正确的是 ( )A.f(x)为奇函数 B.f(x)为偶函数C. f(x)+1为奇函数 D.f(x)+1为偶函数12.函数的图像关于( )A轴对称 B 直线对称 C 坐标原点对称 D 直线对称13.设函数的图像关于直线及直线对称,且时,则()A B C D14若函数的定义域是,则函数的定义域是( )A B C D15.已知在R上是奇函数,且满足 当时, ,则 =( ) A.2 B.2 C.98 D.98二填空题:本大题共8小题。把答案填在题中横线上。16函数的定义域为 17.已知,则的值等于 18.设函数f(x)=ax2+c(a0).若,0x01,则x0的值为 19已知函数,对于上的任意,有如下条件:;其中能使恒成立的条件序号是 20.设函数(xR),若对于任意,都有0 成立,则实数= 三解答题:本大题共8小题,解答应写出文字说明,证明过程或演算步骤。21.已知函数(m为常数,且m0)有极大值9. ()求m的值; ()若斜率为5的直线是曲线的切线,求此直线方程。22、某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房,经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元),为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用平均建筑费用+平均购地费用,平均购
链接地址:https://www.31ppt.com/p-4229228.html