高中数学必修知识点总结完整版.doc
《高中数学必修知识点总结完整版.doc》由会员分享,可在线阅读,更多相关《高中数学必修知识点总结完整版.doc(41页珍藏版)》请在三一办公上搜索。
1、高中数学必修1知识点总结集合函数第二章 基本初等函数附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数中;余切函数中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法: 1、配方法;2、换元法;3、不
2、等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若均为某区间上的增(减)函数,则在这个区间上也为增(减)函数2、若为增(减)函数,则为减(增)函数3、若与的单调性相同,则是增函数;若与的单调性不同,则是减函数。4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4
3、、两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数的定义域关于原点对称,则可以表示为,该式的特点是:右端为一个奇函数和一个偶函数的和。表1指数函数对数数函数定义域值域图象性质过定点过定点减函数增函数减函数增函数表2幂函数奇函数偶函数第一象限性质减函数增函数过定点高中数学必修二知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率 定义:倾斜角不是90的直线,它的倾斜角
4、的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,; 当时,; 当时,不存在。过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。 当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为
5、k,直线在y轴上的截距为b两点式:()直线两点, 截矩式: 其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如: 平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系 垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(6)两直线平行与垂直 当,时, ;注
6、意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点 相交 交点坐标即方程组的一组解。 方程组无解 ; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点, 则 (9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式 在任一直线上任取一点,再转化为点到直线的距离进行求解。二、圆的方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形。(3)求圆方程的方法: 一般都
7、采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=
8、 r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全
9、等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台: 几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。 (6)圆台:定义:以直
10、角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变; 原来与y轴平行的线段仍然与y平行,长
11、度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的表面积和体积公式:V= ; S=4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用: 判断直线是否在平面内 用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面和相交,交线是a,记作a。 符号语言:公理2的作用: 它是判定两个平面相交的方法。 它说明两个平面的交
12、线与两个平面公共点之间的关系:交线必过公共点。 它可以判断点在直线上,即证若干个点共线的重要依据。公理3:经过不在同一条直线上的三点,有且只有一个平面。 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理3及其推论作用:它是空间内确定平面的依据 它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行 空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两
13、条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角 (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系 直线在平面内有无数个公共点 三种位置关系的符号表示:a aA a (9)平面与平面之间的位置关系:平行没有公共点; 相交有一条公共直线。b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理
14、:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行。线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 (线面平行面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行)(2)
15、如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平
16、面,那么这两条直线平行。面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。9、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为。 两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角平面的平行线与平面所成的角:规定为。 平面的垂线与平面所成的角:
17、规定为。 平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角 二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别
18、作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。直二面角:平面角是直角的二面角叫直二面角。 两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法 定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中数学必修三知识点第一章 算法初步 1.1.1 算法的概念 1、算法概念: 在数学上, 现代意义上的 “算法” 通常是指可以用计算机来解决的某一类问题是程序或步骤, 这些程序或步骤必须是明确和有效的
19、,而且能够在有限步之内完成. 2. 算法的特点: (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当 是模棱两可. (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个 确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步 都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经 过有限、
20、事先设计好的步骤加以解决. 1.1.2 程序框图 1、程序框图基本概念: (一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来 准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文 字说明。 (二)构成程序框的图形符号及其作用 程序框 名称 起止框 不可少的。 表示一个算法输入和输出的信息, 可用在算 输入、输出框 法中任何需要输入、输出的位置。 赋值、计算,算法中处理数据需要的算式、 处理框 公式等分别写在不同的用以处理数据的处 理框内。 判断某一条件是否成立, 成立时在出口处标 判断框 明“是”或“Y”
21、;不成立时标明“否”或 “N” 。 学习这部分知识的时候, 要掌握各个图形的形状、 作用及使用规则, 画程序框图的规则如下: 1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外, 大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果; 另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。 、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 (三) 1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到
22、下 的顺序进行的, 它是由若干个依次执行的处理步骤组成的, 它是任何一个算法都离不开的一 种基本算法结构。 顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A 框和 B 框是依次执行的,只有在执行完 A 框指定的操作后,才能接着执 行 B 框所指定的操作。 2、条件结构: 、条件结构: 功能 表示一个算法的起始和结束, 是任何流程图 A B 条件结构是指在算法中通过对条件的判断 根据条件是否成立而选择不同流向的算法结构。 条件 P 是否成立而选择执行 A 框或 B 框。无论 P 条件是否成立,只能执行 A 框或 B 框之一, 不可能同时执行
23、 A 框和 B 框,也不可能 A 框、B 框都不执行。一个判断结构可以有多个判断 框。 3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理 、循环结构: 步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含 条件结构。循环结构又称重复结构,循环结构可细分为两类: (1) 、一类是当型循环结构,如下左图所示,它的功能是当给定的条件 P 成立时,执行 A 框,A 框执行完毕后,再判断条件 P 是否成立,如果仍然成立,再执行 A 框,如此反复执 行 A 框,直到某一次条件 P 不成立为止,此时不再执行 A 框,离开循环结构。 (2) 、另一类
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 知识点 总结 完整版
链接地址:https://www.31ppt.com/p-4226750.html