带电粒子在有界磁场中运动的分析方法.doc
《带电粒子在有界磁场中运动的分析方法.doc》由会员分享,可在线阅读,更多相关《带电粒子在有界磁场中运动的分析方法.doc(31页珍藏版)》请在三一办公上搜索。
1、一、带电粒子在有界磁场中运动的分析方法1圆心的确定因为洛伦兹力F指向圆心,根据Fv,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:粒子速度的偏向角等于转过的圆心角,并等于AB弦与切线的夹角(弦切角)的2倍,如图2所示,即=2。相对的弦切角相等,与相邻的弦切角互补,即+=180。3粒子在磁场中运动时间的确定若要计算转过任一段圆弧
2、所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角与弦切角的关系,或者利用四边形内角和等于360计算出圆心角的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。4带电粒子在两种典型有界磁场中运动情况的分析穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。a、带电粒子在穿过磁场时的偏向角由sin=L/R求出;(、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。穿过圆形磁场区:如图4所示,画好辅助线(半径、速度
3、、轨迹圆的圆心、连心线)。a、带电粒子在穿过磁场时的偏向角可由求出;(、r和R见图标)b、带电粒子在磁场中经历的时间由得出。二、带电粒子在有界磁场中运动类型的分析(一)轨迹的确定(1)确定入射速度的大小和方向,判定带电粒子出射点或其它【例1】(2001年江苏省高考试题)如图5所示,在ylR,如图9所示,因朝不同方向发射的粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是粒子能打中的左侧最远点。为定出P1点的位置,可作平行于ab的直线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于Q点,过Q作ab的垂线,它与ab的交点即为P1。,再考虑N的右侧。任何粒
4、子在运动中离S的距离不可能超过2R,以2R为半径、S为圆心作圆,交ab于N右侧的P2点,此即右侧能打到的最远点。由图中几何关系得,所求长度为 P1P2=NP1+NP2,代入数值得 P1P2=20cm。点评:本题给定带电粒子在有界磁场中运动的入射速度的大小,其对应的轨迹半径也就确定了。但由于入射速度的方向发生改变,从而改变了该粒子运动轨迹图,导致粒子的出射点位置变化。在处理这类问题时重点是画出临界状态粒子运动的轨迹图(对应的临界状态的速度的方向),再利用轨迹半径与几何关系确定对应的出射范围。2给定动态有界磁场(1)确定入射速度的大小和方向,判定粒子出射点的位置【例4】(2006年天津市理综试题)
5、在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60角,求磁感应强度B多大?此次粒子在磁场中运动所用时间t是多少?解析:(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷。如图11所示,粒子由A点射入,由C点飞出,其
6、速度方向改变了90,则粒子轨迹半径 r=R,又,则粒子的荷质比为 。(2)粒子从D点飞出磁场速度方向改变了60角,故AD弧所对圆心角60,粒子做圆周运动的半径,又,所以 ,粒子在磁场中飞行时间:。点评:本题给定带电粒子在有界磁场中运动的入射速度的大小和方向,但由于有界磁场发生改变(包括磁感应强度的大小或方向的改变),从而改变了该粒子在有界磁场中运动的轨迹图,导致粒子的出射点位置变化。在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,再利用轨迹半径与几何关系确定对应的出射点的位置。(二)已知入射速度和出射速度,判定动态有界磁场的边界位置【例5】(1994年全国高考试题)如图12所示,一带
7、电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。重力忽略不计。解析:质点在磁场中作半径为R的圆周运动,qvB=(Mv2)/R,得R=(MV)/(qB)。根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆周,这段圆弧应与入射方向的速度、出射方向的速度相切。如图13所示,过a点作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O点就是圆周的圆心。质点
8、在磁场区域中的轨道就是以O为圆心、R为半径的圆(图中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上。在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周。所以本题所求的圆形磁场区域的最小半径为:,所求磁场区域如图13所示中实线圆所示。点评:本题给定带电粒子在有界磁场中运动的入射速度和出射速度的大小和方向,但由于有界磁场发生改变(磁感应强度不变,但磁场区域在改变),从而改变了该粒子在有界磁场中运动的轨迹图,导致粒子的出射点位置变化。在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,确定临界状态的粒子运动轨迹图,再利用轨迹半径与几何关系确定对应的磁场区域的位置。
9、综上所述,运动的带电粒子垂直进入有界的匀强磁场,若仅受洛仑兹力作用时,它一定做匀速圆周运动,这类问题虽然比较复杂,但只要准确地画出运动轨迹图,并灵活运用几何知识和物理规律,找到已知量与轨道半径R、周期T的关系,求出粒子在磁场中偏转的角度或距离以及运动时间不太难。3(2007年武汉市理综模拟试题)如图16所示,现有一质量为m、电量为e的电子从y轴上的P(0,a)点以初速度v0平行于x轴射出,为了使电子能够经过x轴上的Q(b,0)点,可在y轴右侧加一垂直于xoy平面向里、宽度为L的匀强磁场,磁感应强度大小为B,该磁场左、右边界与y轴平行,上、下足够宽(图中未画出)。已知,Lb。试求磁场的左边界距坐
10、标原点的可能距离。(结果可用反三角函数表示)答案:当rL时(r为电子的轨迹半径),磁场左边界距坐标原点的距离为:(其中);(2)当rL时,磁场左边界距坐标原点的距离为:。最小磁场面积1、磁场范围为圆形例1一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30,如图1所示(粒子重力忽略不计)。试求:(1)圆形磁场区的最小面积;(2)粒子从O点进入磁场区到达点所经历的时间;(3)点的坐标。解析:(1)由题可知,粒子不可能直接由点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动
11、到点。可知,其离开磁场时的临界点与点都在圆周上,到圆心的距离必相等。如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径。由 ,得。弦长为:,要使圆形磁场区域面积最小,半径应为的一半,即:,面积(2)粒子运动的圆心角为1200,时间。(3)距离 ,故点的坐标为(,0)。点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临界点速度垂线的交点上且圆心到这两临界点的距离相等;还要明确所求最小圆形磁场的直径等于粒子运动轨迹的弦长。2、磁场范围为矩形例2如图3所示,直角坐标系
12、第一象限的区域存在沿轴正方向的匀强电场。现有一质量为,电量为的电子从第一象限的某点(,)以初速度沿轴的负方向开始运动,经过轴上的点(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与轴、轴重合,电子偏转后恰好经过坐标原点O,并沿轴的正方向运动,不计电子的重力。求(1)电子经过点的速度;(2)该匀强磁场的磁感应强度和磁场的最小面积。解析:(1)电子从点开始在电场力作用下作类平抛运动运动到点,可知竖直方向:,水平方向:。解得。而,所以电子经过点时的速度为:,设与方向的夹角为,可知,所以300。(2)如图4,电子以与成30进入第四象限后先沿做匀速直线运动
13、,然后进入匀强磁场区域做匀速圆周运动恰好以沿轴向上的速度经过点。可知圆周运动的圆心一定在轴上,且点到O点的距离与到直线上M点(M点即为磁场的边界点)的垂直距离相等,找出点,画出其运动的部分轨迹为弧MNO,所以磁场的右边界和下边界就确定了。设偏转半径为,由图知,解得,方向垂直纸面向里。矩形磁场的长度,宽度。矩形磁场的最小面积为:点评:此题中粒子进入第四象限后的运动即为例1中运动的逆过程,解题思路相似,关键要注意矩形磁场边界的确定。3、磁场范围为三角形例3如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC。为了使该粒子能在AC边上的N点(CMCN)垂真于AC边飞出
14、ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场。若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。试求:(1)粒子在磁场里运动的轨道半径及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形区域磁场的最小边长;解析:(1)由和,得: , (2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M点作圆周运动到N点,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O,粒子的运动轨迹为弧GDEF,圆弧在点与初速度方向相切,在F点与出射速度相切。画出三角形,其与圆弧在D、E两点相切,并与圆交于F、G两点,此
15、为符合题意的最小磁场区域。由数学知识可知FOG600,所以粒子偏转的圆心角为3000,运动的时间 (3)连接并延长与交与点,由图可知,点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角形磁场的内切圆。4、磁场范围为树叶形例4在平面内有许多电子(质量为、电量为),从坐标O不断以相同速率沿不同方向射入第一象限,如图7所示。现加一个垂直于平面向内、磁感强度为的匀强磁场,要求这些电子穿过磁场后都能平行于轴向正方向运动,求符合该条件磁场的最小面积
16、。解析:电子在磁场中运动半径是确定的,设磁场区域足够大,作出电子可能的运动轨道如图8所示,因为电子只能向第一象限平面内发射,其中圆O1和圆O2为从圆点射出,经第一象限的所有圆中的最低和最高位置的两个圆。圆O2在轴上方的个圆弧odb就是磁场的上边界。其它各圆轨迹的圆心所连成的线必为以点O为圆心,以R为半径的圆弧O1OmO2 。由于要求所有电子均平行于x轴向右飞出磁场,故由几何知识知电子的飞出点必为每条可能轨迹的最高点。可证明,磁场下边界为一段圆弧,只需将这些圆心连线(图中虚线O1O2)向上平移一段长度为的距离即图9中的弧ocb就是这些圆的最高点的连线,即为磁场区域的下边界。两边界之间图形的阴影区
17、域面积即为所求磁场区域面积:。 还可根据圆的知识求出磁场的下边界。设某电子的速度V0与x轴夹角为,若离开磁场速度变为水平方向时,其射出点也就是轨迹与磁场边界的交点坐标为(x,y),从图10中看出,即(x0,y0),这是个圆方程,圆心在(0,R)处,圆的 圆弧部分即为磁场区域的下边界。点评:这道题与前三题的区别在于要求学生通过分析确定磁场的形状和范围,磁场下边界的处理对学生的数理结合能力和分析能力要求较高。由以上题目分析可知,解决此类问题的关键是依据题意,分析物体的运动过程和运动形式,扣住运动过程中的临界点,应用几何知识,找出运动的轨迹圆心,画出粒子运动的部分轨迹,确定半径,再用题目中规定形状的
18、最小磁场覆盖粒子运动的轨迹,然后应用数学工具和相应物理规律分析解出所求的最小面积即可。(三)动态圆法巧解带电粒子运动问题带电粒子在垂直于磁场方向的平面上受洛伦兹力做圆周运动,以恒定的速率从某点A开始运动,随方向不同,轨迹不同。但无论方向向哪里,所有轨迹一定会过定点A,并且所有轨迹的半径相等,A点是带电粒子在磁场中所有圆周运动的公共点,如图1所示。利用这一个规律,可以帮助同学们分析解决带电粒子在磁场中运动的问题,可以化难为易,直观、形象、简捷。解题时只需将圆一转,思路即出。基本原理:带电粒子在垂直于磁场的平面内的运动轨迹是一个半径为的圆,带电粒子可能到达的地方就在半径为的圆绕A点转动所扫过的面积
19、范围内。例1.如图2所示,真空室内存在匀强磁场,磁场方向垂直于图中纸面向里,磁感应强度的大小B0.6T。磁场内有一块平面感光平板ab,板面与磁场方向平行。在距ab的距离为L16cm处。有一个点状的粒子放射源S,它向各个方向发射粒子,粒子的速度都是。已知粒子的电荷与质量之比。现在只考虑在图纸平面中运动的粒子,求ab上被粒子打中的区域的长度。解析:粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有:由此得,代入数据得R10cm。可见,。因向不同的方向发射粒子的圆轨迹都经过了S,由此可知,将通过S点半径为R的圆,绕S点转动,此圆就会与ab直线相交,其相交部分就是题里要求的ab直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带电 粒子 磁场 运动 分析 方法
链接地址:https://www.31ppt.com/p-4223578.html