人教版高中数学教案《由递推公式求通项公式》 .doc
《人教版高中数学教案《由递推公式求通项公式》 .doc》由会员分享,可在线阅读,更多相关《人教版高中数学教案《由递推公式求通项公式》 .doc(8页珍藏版)》请在三一办公上搜索。
1、课题:由递推公式求通项公式教材分析:由课本的等差、等比通项公式的推导过程,总结出其他递推公式如何求通项公式。教学目的: 思想教育:培养学生在求解通项问题上掌握在社会上为人处事,解决问题的能力; 知识传授:数列的递推公式向通项公式转化的基本方法; 能力培养:培养学生的逻辑推理能力,分析问题、解决问题的能力,利用课本所学知识举一反三; 情感培养:促进师生间的交流与合作,培养学生与他人的交往能力及团结协作能力。教学重点:数列的递推公式,通项公式及求通项公式;教学难点:如何分析递推公式,进而求出通项公式;教学方法:启发式教学课型:拓展延伸课课 时:1节课教学步骤:一、 复习回顾:师:回忆什么是递推公式
2、?什么是通项公式?(学生讨论、交流,总结回忆课本上的定义)师:见教材P113面,看到递推公式定义递推公式:如果已知数列的第1项(或前几项)且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。师:见教材P110面,看到通项公式的定义通项公式:数学的第n项与n之间的关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。师:数列的递推公式与通项公式之间各有什么行特点?递推公式反应的是数列项与项之间的函数关系。通项公式反应的是数列项与项数之间的函数关系。它更能直观地反映数列的特征,帮我们一般多用通项公式表示数列,也经常把递推公式转化为通项公式来研究数列,
3、所以由递推公式求数列的通项公式就尤为显得重要。师:现在回忆等差数列及等比数列的通项公式的求法?求等差数列通项公式,我们可以这样来求:由等差数列定义可知 累加起来即得: 即:从而求出通项公式。求等比数列通项公式,我们也可以采用类似的方法,由等比数列定义可知 累乘起来即得 即: 从而求出通项公式。本节课我们以等差、等比数列的通项公式的求法作为基础来解决已知相邻两项的递推公式,如何来求这个数列的通项公式。二、 示例解惑师:等差、等比数列的定义实质上给出的就是一个已知相邻两项的递推公式,那么由求它们的通项公式的方法可知,解决这类问题有两种方法:一是累加,二是累乘。那么由递推公式求通项公式中很多问题都是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 由递推公式求通项公式 人教版高中数学教案由递推公式求通项公式 人教版 高中数学 教案 公式 求通项
链接地址:https://www.31ppt.com/p-4222538.html