新人教版高二数学上学期精品教案(全册).doc
《新人教版高二数学上学期精品教案(全册).doc》由会员分享,可在线阅读,更多相关《新人教版高二数学上学期精品教案(全册).doc(193页珍藏版)》请在三一办公上搜索。
1、新人教版高二数学上学期精品教案(全册)第六章 不等式第一教时教材:不等式、不等式的综合性质目的:首先让学生掌握不等式的一个等价关系,了解并会证明不等式的基本性质。过程:一、引入新课1世界上所有的事物不等是绝对的,相等是相对的。2过去我们已经接触过许多不等式 从而提出课题二、几个与不等式有关的名称 (例略)1“同向不等式与异向不等式” 2“绝对不等式与矛盾不等式”三、不等式的一个等价关系(充要条件)1从实数与数轴上的点一一对应谈起 2应用:例一 比较与的大小解:(取差)- 小结:步骤:作差变形判断结论例三 比较大小1和解: ;当时=;当时 3设且,比较与的大小解: 当时;当时四、不等式的性质1性
2、质1:如果,那么;如果,那么(对称性)证: 由正数的相反数是负数 2性质2:如果, 那么(传递性)证:, ,两个正数的和仍是正数 由对称性、性质2可以表示为如果且那么五、小结:1不等式的概念 2一个充要条件 3性质1、2六、作业:P5练习 P8 习题6.1 13补充题:1若,比较与的大小解: -= 2比较2sinq与sin2q的大小(0q2p)略解:2sinq-sin2q=2sinq(1-cosq)当q(0,p)时2sinq(1-cosq)0 2sinqsin2q当q(p,2p)时2sinq(1-cosq)0 2sinq当时 总有第二教时教材:不等式基本性质(续完)目的:继续学习不等式的基本性
3、质,并能用前面的性质进行论证,从而让学生清楚事物内部是具有固有规律的。过程:一、复习:不等式的基本概念,充要条件,基本性质1、2二、1性质3:如果,那么 (加法单调性)反之亦然证: 从而可得移项法则:推论:如果且,那么 (相加法则)证:推论:如果且,那么 (相减法则)证: 或证: 上式0 2性质4:如果且, 那么;如果且那么 (乘法单调性)证: 根据同号相乘得正,异号相乘得负,得:时即:时即:推论1 如果且,那么(相乘法则)证:推论1(补充)如果且,那么(相除法则)证: 推论2 如果, 那么 3性质5:如果,那么 证:(反证法)假设则:若这都与矛盾 三、小结:五个性质及其推论口答P8 练习1、
4、2 习题6.1 4四、作业 P8 练习3 习题6.1 5、6五、供选用的例题(或作业)1已知,求证:证:2若,求不等式同时成立的条件解:3设, 求证证: 又 0 4 比较与的大小解:- 当时即 5若 求证:解: 6若 求证:证: p1 又 原式成立第三教时教材:算术平均数与几何平均数目的:要求学生掌握算术平均数与几何平均数的意义,并掌握“平均不等式”及其推导过程。过程:一、 定理:如果,那么(当且仅当时取“=”) 证明: 1指出定理适用范围:2强调取“=”的条件二、定理:如果是正数,那么(当且仅当时取“=”)证明: 即: 当且仅当时 注意:1这个定理适用的范围: 2语言表述:两个正数的算术平均
5、数不小于它们的几何平均数。三、推广: 定理:如果,那么(当且仅当时取“=”)证明: 上式0 从而指出:这里 就不能保证 推论:如果,那么 (当且仅当时取“=”) 证明: 四、关于“平均数”的概念1如果 则:叫做这n个正数的算术平均数叫做这n个正数的几何平均数2点题:算术平均数与几何平均数3基本不等式: 这个结论最终可用数学归纳法,二项式定理证明(这里从略)语言表述:n个正数的算术平均数不小于它们的几何平均数。4的几何解释:ABDDCab以为直径作圆,在直径AB上取一点C, 过C作弦DDAB 则 从而而半径五、例一 已知为两两不相等的实数,求证:证: 以上三式相加:六、小结:算术平均数、几何平均
6、数的概念基本不等式(即平均不等式)七、作业:P11-12 练习1、2 P12 习题5.2 1-3补充:1已知,分别求的范围 (8,11) (3,6) (2,4)2试比较 与(作差)3求证:证: 三式相加化简即得第四教时教材:极值定理目的:要求学生在掌握平均不等式的基础上进而掌握极值定理,并学会初步应用。过程:一、复习:算术平均数与几何平均数定义,平均不等式二、 若,设 求证: 加权平均;算术平均;几何平均;调和平均证:即:(俗称幂平均不等式)由平均不等式即:综上所述:例一、若 求证证:由幂平均不等式:三、 极值定理 已知都是正数,求证:1 如果积是定值,那么当时和有最小值2 如果和是定值,那么
7、当时积有最大值证: 1当 (定值)时, 上式当时取“=” 当时有2当 (定值)时, 上式当时取“=” 当时有注意强调:1最值的含义(“”取最小值,“”取最大值) 2用极值定理求最值的三个必要条件:一“正”、二“定”、三“相等”四、 例题1证明下列各题: 证: 于是若上题改成,结果将如何?解: 于是从而若 则解:若则显然有若异号或一个为0则 2求函数的最大值求函数的最大值解: 当即时 即时 当时 3若,则为何值时有最小值,最小值为几?解: = 当且仅当即时五、 小结:1四大平均值之间的关系及其证明 2极值定理及三要素六、 作业:P12 练习3、4 习题6.2 4、5、6补充:下列函数中取何值时,
8、函数取得最大值或最小值,最值是多少?1 时2 3时 第五教时教材:极值定理的应用目的:要求学生更熟悉基本不等式和极值定理,从而更熟练地处理一些最值问题。过程:一、 复习:基本不等式、极值定理二、 例题:1求函数的最大值,下列解法是否正确?为什么?解一: 解二:当即时 答:以上两种解法均有错误。解一错在取不到“=”,即不存在使得;解二错在不是定值(常数)正确的解法是:当且仅当即时2若,求的最值解: 从而 即3设且,求的最大值解: 又即4已知且,求的最小值解: 当且仅当即时三、关于应用题1P11例(即本章开头提出的问题)(略)2将一块边长为的正方形铁皮,剪去四个角(四个全等的正方形),作成一个无盖
9、的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?解:设剪去的小正方形的边长为则其容积为当且仅当即时取“=”即当剪去的小正方形的边长为时,铁盒的容积为四、 作业:P12 练习4 习题6.2 7补充:1求下列函数的最值:1 (min=6)2 () 21时求的最小值,的最小值2设,求的最大值(5)3若, 求的最大值4若且,求的最小值3若,求证:的最小值为34制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时,用料最省?(不计加工时的损耗及接缝用料)第六教时教材:不等式证明一(比较法)目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一比较法,要求学生能教熟
10、练地运用作差、作商比较法证明不等式。过程:一、 复习: 1不等式的一个等价命题2比较法之一(作差法)步骤:作差变形判断结论二、作差法:(P1314)1 求证:x2 + 3 3x 证:(x2 + 3) - 3x = x2 + 3 3x2 已知a, b, m都是正数,并且a b,求证: 证:a,b,m都是正数,并且a 0 , b - a 0 即: 变式:若a b,结果会怎样?若没有“a a2b3 + a3b2 证:(a5 + b5 ) - (a2b3 + a3b2) = ( a5 - a3b2) + (b5 - a2b3 ) = a3 (a2 - b2 ) - b3 (a2 - b2) = (a2
11、 - b2 ) (a3 - b3)= (a + b)(a - b)2(a2 + ab + b2)a, b都是正数,a + b, a2 + ab + b2 0又a b,(a - b)2 0 (a + b)(a - b)2(a2 + ab + b2) 0即:a5 + b5 a2b3 + a3b24 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果m n,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S,甲乙两人走完全程所需时间分别是t1, t2,则: 可得:S, m, n都是正数,且m
12、n,t1 - t2 0 即:t1 b 0时, 当b a 0时, (其余部分布置作业)作商法步骤与作差法同,不过最后是与1比较。四、小结:作差、作商五、作业: P15 练习 P18 习题6.3 14 第七教时教材:不等式证明二(比较法、综合法)目的:加强比商法的训练,以期达到熟练技巧,同时要求学生初步掌握用综合法证明不等式。过程:一、比较法: a) 复习:比较法,依据、步骤 比商法,依据、步骤、适用题型b) 例一、证明:在是增函数。证:设2x1 0, x1 + x2 - 4 0 又y1 0, y1 y2 在是增函数二、 综合法:定义:利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等
13、式,这个证明方法叫综合法。i. 已知a, b, c是不全相等的正数,求证:a(b2 + c2) + b(c2 + a2) + c(a2 + b2) 6abc 证:b2 + c2 2bc , a 0 , a(b2 + c2) 2abc 同理:b(c2 + a2) 2abc , c(a2 + b2) 2abc a(b2 + c2) + b(c2 + a2) + c(a2 + b2) 6abc 当且仅当b=c,c=a,a=b时取等号,而a, b, c是不全相等的正数 a(b2 + c2) + b(c2 + a2) + c(a2 + b2) 6abcii. 设a, b, c R,1求证:2求证:3若a
14、 + b = 1, 求证: 证:1 2同理:, 三式相加:3由幂平均不等式:iii. a , b, cR, 求证:123 证:1法一:, , 两式相乘即得。 法二:左边 3 + 2 + 2 + 2 = 92 两式相乘即得3由上题:即:三、小结:综合法四、作业: P1516 练习 1,2 P18 习题6.3 1,2,3补充:1 已知a, bR+且a b,求证:(取差)2 设aR,x, yR,求证:(取商)3 已知a, bR+,求证:证:a, bR+ 4 设a0, b0,且a + b = 1,求证:证: 第八教时教材:不等式证明三(分析法)目的:要求学生学会用分析法证明不等式。过程:一、 介绍“分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版高二 数学 上学 精品 教案
链接地址:https://www.31ppt.com/p-4213017.html