数学:三角函数综合练习2.doc
《数学:三角函数综合练习2.doc》由会员分享,可在线阅读,更多相关《数学:三角函数综合练习2.doc(5页珍藏版)》请在三一办公上搜索。
1、三角函数综合练习2时间:2011.1.22 份数:120 编制:康志轩一、选择题1方程的解的个数是( )A. B. C. D.2在内,使成立的取值范围为( )A B C D 3已知函数的图象关于直线对称,则可能是( )A. B. C. D.4已知是锐角三角形,则( )A. B. C. D.与的大小不能确定5如果函数的最小正周期是,且当时取得最大值,那么( )A. B. C. D.6的值域是( )A B C D 二、填空题1已知是第二、三象限的角,则的取值范围_。2函数的定义域为,则函数的定义域为_.3函数的单调递增区间是_.4设,若函数在上单调递增,则的取值范围是_。5函数的定义域为_。三、解
2、答题1(1)求函数的定义域。 (2)设,求的最大值与最小值。2比较大小(1);(2)。3判断函数的奇偶性。4设关于的函数的最小值为,试确定满足的的值,并对此时的值求的最大值。 参考答案:一、选择题 1.C 在同一坐标系中分别作出函数的图象,左边三个交点,右边三个交点,再加上原点,共计个2.C 在同一坐标系中分别作出函数的图象,观察:刚刚开始即时,;到了中间即时,;最后阶段即时,3.C 对称轴经过最高点或最低点,4.B 5.A 可以等于6.D 二、填空题1. 2. 3. 函数递减时,4. 令则是函数的关于原点对称的递增区间中范围最大的,即,则5 三、解答题1.解:(1) 得,或 (2),而是的递减区间 当时,; 当时,。2.解:(1);(2)3.解:当时,有意义;而当时,无意义, 为非奇非偶函数。4.解:令,则,对称轴, 当,即时,是函数的递增区间,;当,即时,是函数的递减区间, 得,与矛盾;当,即时, 得或,此时。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 三角函数 综合 练习
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4212847.html