固体物理教程思考题.doc
《固体物理教程思考题.doc》由会员分享,可在线阅读,更多相关《固体物理教程思考题.doc(34页珍藏版)》请在三一办公上搜索。
1、1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比.设原子的半径为R, 体心立方晶胞的空间对角线为4R, 晶胞的边长为 , 晶胞的体积为 , 一个晶胞包含两个原子, 一个原子占的体积为 ,单位体积晶体中的原子数为 ; 面心立方晶胞的边长为 , 晶胞的体积为 , 一个晶胞包含四个原子, 一个原子占的体积为 , 单位体积晶体中的原子数为 . 因此, 同体积的体心和面心立方晶体中的原子数之比为 =0.272.2. 解理面是面指数低的晶面还是指数高的晶面?为什么?晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族
2、的指数低, 所以解理面是面指数低的晶面.3. 基矢为 , , 的晶体为何种结构? 若 + , 又为何种结构? 为什么? 有已知条件, 可计算出晶体的原胞的体积.由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量, , . 对应体心立方结构. 根据14题可以验证, 满足选作基矢的充分条件.可见基矢为 , , 的晶体为体心立方结构. 若+ ,则晶体的原胞的体积,该晶体仍为体心立方结构.4. 若 与 平行, 是否是 的整数倍? 以体心立方和面心立方结构证明之.若 与 平行, 一定是 的整数倍. 对体心立方结构, 由(1.2)式可知, , ,=h +k +l =(k+l
3、) (l+h) (h+k) =p =p(l1 +l2 +l3 ), 其中p是(k+l)、(l+h)和(h+k)的公约(整)数. 对于面心立方结构, 由(1.3)式可知, , , ,=h +k +l =(-h+k+l) +(h-k+l) +(h+k-l) =p = p(l1 +l2 +l3 ),其中p是(-h+k+l)、(-k+h+l)和(h-k+l)的公约(整)数.5. 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基矢 、 和 重合,除O点外,OA、OB和OC上是否有格点? 若ABC面的指数为(234),情况又如何?晶面族(123)截 、 和 分别为1、2、3等
4、份,ABC面是离原点O最近的晶面,OA的长度等于 的长度,OB的长度等于 的长度的1/2,OC的长度等于 的长度的1/3,所以只有A点是格点. 若ABC面的指数为(234)的晶面族, 则A、B和C都不是格点.6. 验证晶面( ),( )和(012)是否属于同一晶带. 若是同一晶带, 其带轴方向的晶列指数是什么?由习题12可知,若( ),( )和(012)属于同一晶带, 则由它们构成的行列式的值必定为0.可以验证 =0,说明( ),( )和(012)属于同一晶带. 晶带中任两晶面的交线的方向即是带轴的方向. 由习题13可知, 带轴方向晶列l1l2l3的取值为 l1= =1, l2= =2, l3
5、= =1.7带轴为001的晶带各晶面,其面指数有何特点? 带轴为001的晶带各晶面平行于001方向,即各晶面平行于晶胞坐标系的 轴或原胞坐标系的 轴,各晶面的面指数形为(hk0)或(h1h20), 即第三个数字一定为0.8. 与晶列l1l2l3垂直的倒格面的面指数是什么? 正格子与倒格子互为倒格子. 正格子晶面(h1h2h3)与倒格式 h1 +h2 +h3 垂直, 则倒格晶面(l1l2l3)与正格矢 l1 + l2 + l3 正交. 即晶列l1l2l3与倒格面(l1l2l3) 垂直.9. 在结晶学中, 晶胞是按晶体的什么特性选取的? 在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考
6、虑晶体的宏观对称性.10. 六角密积属何种晶系? 一个晶胞包含几个原子? 六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.11. 体心立方元素晶体, 111方向上的结晶学周期为多大? 实际周期为多大? 结晶学的晶胞,其基矢为 ,只考虑由格矢 h +k +l 构成的格点. 因此, 体心立方元素晶体111方向上的结晶学周期为 , 但实际周期为 /2.12. 面心立方元素晶体中最小的晶列周期为多大? 该晶列在哪些晶面内? 周期最小的晶列一定在原子面密度最大的晶面内. 若以密堆积模型, 则原子面密度最大的晶面就是密排面. 由图1.9可知密勒指数(111)可以证明原胞坐标系中的面指数也为(11
7、1)是一个密排面晶面族, 最小的晶列周期为 . 根据同族晶面族的性质, 周期最小的晶列处于111面内.13. 在晶体衍射中,为什么不能用可见光? 晶体中原子间距的数量级为 米,要使原子晶格成为光波的衍射光栅,光波的波长应小于 米. 但可见光的波长为7.64.0 米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.14. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的
8、晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式 可知, 面间距 大的晶面, 对应一个小的光的掠射角 . 面间距 小的晶面, 对应一个大的光的掠射角 . 越大, 光的透射能力就越强, 反射能力就越弱.15. 温度升高时, 衍射角如何变化? X光波长变化时, 衍射角如何变化? 温度升高时, 由于热膨胀, 面间距 逐渐变大. 由布拉格反射公式 可知, 对应同一级衍射, 当X光波长不变时, 面间距 逐渐变大, 衍射角 逐渐变小.所以温度升高, 衍射角变小.当温度不变, X光波长变大时, 对于同一晶面族, 衍射角 随之变大.16. 面心立方元素晶
9、体, 密勒指数(100)和(110)面, 原胞坐标系中的一级衍射, 分别对应晶胞坐标系中的几级衍射? 对于面心立方元素晶体, 对应密勒指数(100)的原胞坐标系的面指数可由(1.34)式求得为( ), p=1. 由(1.33)式可知, ; 由(1.16)和(1.18)两式可知, ; 再由(1.26)和(1.27)两式可知, n=2n. 即对于面心立方元素晶体, 对应密勒指数(100)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的二级衍射. 对于面心立方元素晶体, 对应密勒指数(110)的原胞坐标系的面指数可由(1.34)式求得为(001), p=2. 由(1.33)式可知, ; 由(1.
10、16)和(1.18)两式可知, ; 再由(1.26)和(1.27)两式可知, n=n, 即对于面心立方元素晶体, 对应密勒指数(110)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的一级衍射.17. 由KCl的衍射强度与衍射面的关系, 说明KCl的衍射条件与简立方元素晶体的衍射条件等效.Cl 与K是原子序数相邻的两个元素, 当Cl原子俘获K原子最外层的一个电子结合成典型的离子晶体后, 与 的最外壳层都为满壳层, 原子核外的电子数和壳层数都相同, 它们的离子散射因子都相同. 因此, 对X光衍射来说, 可把 与 看成同一种原子. KCl与NaCl结构相同, 因此, 对X光衍射来说, KCl的
11、衍射条件与简立方元素晶体等效.由KCl的衍射强度与衍射面的关系也能说明KCl的衍射条件与简立方元素晶体的衍射条件等效. 一个KCl晶胞包含4个 离子和4个 离子,它们的坐标:(000)( )( )( ):( )( )( )( )由(1.45)式可求得衍射强度Ihkl与衍射面(hkl)的关系Ihkl= 1+cos 由于 等于 , 所以由上式可得出衍射面指数 全为偶数时, 衍射强度才极大. 衍射面指数的平方和 : 4, 8, 12, 16, 20, 24. 以上诸式中的n由 决定. 如果从X光衍射的角度把KCl看成简立方元素晶体, 则其晶格常数为 , 布拉格反射公式化为 显然 , 衍射面指数平方和
12、 : 1, 2, 3, 4, 5, 6. 这正是简立方元素晶体的衍射规律.18. 金刚石和硅、锗的几何结构因子有何异同? 取几何结构因子的(1.44)表达式 , 其中uj,vj,wj是任一个晶胞内,第j个原子的位置矢量在 轴上投影的系数. 金刚石和硅、锗具有相同的结构, 尽管它们的 大小不相同, 但第j个原子的位置矢量在 轴上投影的系数相同. 如果认为晶胞内各个原子的散射因子 都一样, 则几何结构因子化为 .在这种情况下金刚石和硅、锗的几何结构因子的求和部分相同. 由于金刚石和硅、锗原子中的电子数和分布不同, 几何结构因子中的原子散射因子 不会相同. 19. 旋转单晶法中, 将胶片卷成以转轴为
13、轴的圆筒, 胶片上的感光线是否等间距? 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 衍射线构成了一个个圆锥面. 如果胶片上的感光线如图所示是等间距, 则应有关系式 tg .其中R是圆筒半径, d是假设等间距的感光线间距, 是各个圆锥面与垂直于转轴的平面的夹角. 由该关系式可得sin ,即 与整数m不成正比. 但可以证明.即 与整数m成正比(参见本章习题23). 也就是说, 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 胶片上的感光线不是等间距的. 20. 如图1.33所示, 哪一个衍射环感光最重? 为什么? 最小衍射环感光最重. 由布拉格反射公式可知, 对应掠射角 最小的晶面族具有最大的面间
14、距. 面间距最大的晶面上的原子密度最大, 这样的晶面对射线的反射(衍射)作用最强. 最小衍射环对应最小的掠射角,它的感光最重.1.是否有与库仑力无关的晶体结合类型?共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子
15、形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.2.如何理解库仑力是原子结合的动力?晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力. 3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能. 原子的动能与原子间的相互作用势能之和为晶体的内能. 在0K时, 原子还存在零点振动能. 但零
16、点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能. 4.原子间的排斥作用取决于什么原因?相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠. 5. 原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么? 在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶
17、体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为 , 当相邻原子间的距离 时, 吸引力起主导作用; 当相邻原子间的距离 时, 吸引力起主导作用; 当相邻原子间的距离 时, 排斥力起主导作用. 当固体受挤压时, , 原子间的吸引力抗击着这一形变. 因此, 固体呈现宏观弹性的微观本质是原子间存在着相互作用力, 这种作用力既包含着吸引力, 又包含着排斥力. 14.你是如何理解弹性的, 当施加一定力, 形变大的弹性强呢, 还是形变小的强?对于弹性形变, 相邻原子间的距离在 附近变化. 令 , 则有因为 是相对形变, 弹性力学称为应变, 并计作S, 所以原子间的作用力再令,.可
18、见, 当施加一定力, 形变S大的固体c小, 形变S小的固体c大. 固体的弹性是固体的属性, 它与外力和形变无关. 弹性常数c是固体的属性, 它的大小可作为固体弹性强弱的度量. 因此, 当施加一定力, 形变大的弹性弱, 形变小的强. 从这种意义上说, 金刚石的弹性最强.15.拉伸一长棒, 任一横截面上的应力是什么方向? 压缩时, 又是什么方向? 如上图所示, 在长棒中取一横截面, 长棒被拉伸时, 从截面的右边看, 应力向右, 但从截面的左边看, 应力向左. 压缩时, 如下图所示, 应力方向与拉伸时正相反. 可见, 应力方向依赖于所取截面的外法线矢量的方向. 16.固体中某一面积元两边的应力有何关
19、系?以上题为例, 在长棒中平行于横截面取一很薄的体积元, 拉伸时体积元两边受的应力如图所示. 压缩时体积元两边受的应力如下图所示. 当体积元无限薄, 体积元将变成面积元. 从以上两图可以看出, 面积元两边的应力大小相等方向相反. 17.沿某立方晶体一晶轴取一细长棒做拉伸实验, 忽略宽度和厚度的形变, 由此能否测出弹性劲度常数 ?立方晶体 轴是等价的, 设长棒方向为x( , 或 , 或 )轴方向, 做拉伸实验时若忽略宽度和厚度的形变, 则只有应力 应变 不为0, 其它应力应变分量都为0. 由(2.55)可得 . 设长棒的横截面积为A, 长度为L, 拉伸力为F, 伸长量为 , 则有: . 于是,
20、.18.若把上题等价成弹簧的形变, 弹簧受的力 , 与 有何关系? 上题中长棒受的力,长棒的伸长量 即是弹簧的伸长量x. 因此, 可见, 弹簧的弹性系数 与弹性劲度常数的量纲是不同的.19.固体中的应力与理想流体中的压强有何关系? 固体受挤压时, 固体中的正应力 与理想流体中的压强是等价的, 但 不同于理想流体中的压强概念. 因为压强的作用力与所考虑截面垂直, 而 与所考虑截面平行. 也就是说, 理想流体中不存在与所考虑截面平行的作用力. 这是因为理想流体分子间的距离比固体原子间距大得多, 流层与流层分子间不存在切向作用力. 20.固体中的弹性波与理想流体中的传播的波有何差异? 为什么?理想流
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 物理 教程 思考题
链接地址:https://www.31ppt.com/p-4211300.html