应用物理学论文 28973.doc
《应用物理学论文 28973.doc》由会员分享,可在线阅读,更多相关《应用物理学论文 28973.doc(25页珍藏版)》请在三一办公上搜索。
1、基于小波分析的光谱数据去噪1.1 课题背景及意义光谱分析法是以辐射能与物质组成和结构之间的内在联系及表现形式光谱的测量为基础,利用光谱来分析样品的物质组成,属性或者物态信息的技术。由于光谱分析技术具有分析速度快,精度高,结果稳定,无破坏等优点,在化工、农业、医学等领域得到越来越广泛的应用1,2。由于在光谱测量过程会中受到仪器,样品背景,各种干扰等随机因素的影响,得到的光谱数据中不可避免的含有噪声,如果不加以处理,会影响校正模型建立的质量和未知样品预测结果的准确性。通过对光谱数据的去噪预处理,可以减少噪声的影响,提高模型的稳定性。通常采用的去噪方法包括平滑,傅立叶分析等。其中光谱平滑的目的是消除
2、高频随机误差,其基本思路是在平滑点的前后各取若干点来进行“平均”或“拟合”,以求得平滑点的最佳估计值,消除随机噪声,这一方法的基本前提是随机噪声在处理“窗口”内的均值为零。这种平滑的方法可有效地平滑高频噪声,提高信噪比,但是它对有效信号也进行平滑,容易造成信号失真,降低了光谱分辨率,而且光谱的两端不能进行平滑,因此存在一定的局限性。傅立叶分析对数据处理应用的主要目的是加快信息的提取过程,通过压缩数据使得信息提取更加有效,同时去除干扰和噪声。在传统的信号处理中,傅立叶分析是数据预处理的主要手段,但是傅立叶分析只能获得信号的整个频谱,不能得到信号的局部特性,不能充分刻画动态的非平稳信号的特征3。而
3、小波分析可以把各种频率组成的混合信号按照不同的分辨尺度分解成一系列不同频率的块信号。由此可对特殊频率范围内的噪声进行滤波处理,小波分析灵活滤波的特性是其它方法无法比拟的。小波分析是从傅立叶分析的基础上发展以来的,通过引入可变的尺度因子和平移因子,在信号分析时具有可调的时频窗口,巧妙地解决了时频局部化矛盾,弥补了傅立叶分析的不足,为信号处理提供了一种多分辨率下的动态分析手段。由于小波分析对信号的分时分频的精细表达和多分辨率分析的特点,即有用信号和噪声信号在不同尺度上呈现不同的视频特征或者传播行为,根据这些特征的不同,可以将有用信号提取出来。小波算法能够满足各种去噪要求,如低通,高通,随机噪音的去
4、除等4,5。小波分析有效地完成了信号的时间与空间的局部化,对于信号分析而言意义重大。小波分析具有多分辨率分析和多尺度的特点,可以由粗到精地逐步观察信号,同时还具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点;适当地选择基小波,可以使其在时、频两域都有表征信号局部特征的能力,因此非常有利于信号分析。由于小波分析具有以上特性,人们把小波分析誉为分析信号的数学显微镜6。1.2 本文的研究目的和所做的研究工作本文的目的是运用小波分析对气体的光谱数据进行去噪。所作的研究工作是对小波分析多光谱数据的去噪的过程进行细致的分析。同时对MATLAB软件的应用进行了解,进行仿真前的准备。1.3 研究工
5、具本文研究所用的工具是MATLAB的小波工具箱。MATLAB是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,它集数值分析,矩阵运算,信号处理和图形显示于一体,构成了一个方便的,界面友好的用户环境。小波工具箱是许多基于MATLAB技术计算环境的函数包的集合。应用MATLAB体系下的小波与小波包,提供了分解和综合信号的工具。小波工具箱提供两种工具,一是控制线的函数,二是图像操作工具。第一类工具是由可以直接调出线或应用命令的函数组成,这些函数大多是M文件或者各种实现特定的小波分解与综合算法的陈述7。本文的第二部分主要介绍了小波分析的一些基础的理论知识,并对小波的一些去噪方
6、法进行了解析,第三部分则是根据小波分析进行光谱数据去噪的仿真。第四部分对本文进行总体的总结以及对未来的展望。2 小波分析的理论基础及去噪方法的解析本节主要介绍了小波分析的基本理论以及小波分析对一维信号进行消噪处理,其中理论部分包括连续小波分析,小波分析和傅立叶分析的比较,常用小波的介绍以及多分辨率分析在小波分析理论中的作用。运用小波分析进行一维信号的消噪处理是小波分析的一个重要应用,尤其是在光谱数据预处理去噪中有着广泛的应用。主要有基于小波分析的局部极大值点去噪和基于阈值去噪的两种技术。Mallat提出了通过寻找小波分析系数中的局部极大值点,并根据此重构信号可以很好的逼近原始信号。Donoho
7、提出了基于阈值的小波去噪方法,先对信号进行小波分析,再对小波分析值进行去噪处理,最后反分析得到去噪后的信号8,9。2.1 连续小波分析的基本概念小波分析方法是一种窗口大小(即窗口面积)固定但其形状可变,时间窗和频率窗都可改变的时频局部化分析方法,即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率。正是这种特性,使小波分析具有对信号的自适应性10。小波分析被看成调和分析这一数学领域半个世纪以来的工作结晶,已经广泛地应用于信号处理,图像处理,量子场论,地震勘探,语音合成与识别,音乐,雷达,CT 成像,彩色复印,流体湍流,天体识别,机器视觉,机械故障
8、诊断与监控,分形及数字电视等领域。原则上讲,传统上使用傅立叶分析的地方都可以用小波分析来取代。小波分析优于傅立叶分析的地方是,它在时域和频域同时具有良好的局部化性质11。设,表示平方可积的实数空间,即能量有限的信号空间,其傅立叶分析为.当满足允许性条件(Admissiable Condition): 式2.1时,我们称为基本小波或者小波母函数(Mother Wavelet)。将母函数经伸缩和平移后,就可以得到一个小波序列。对于连续的情况,小波序列为: 式2.2其中,为伸缩因子,为平移因子。一般归一化,令。由于,所以也单位化了。对于任意的函数的连续小波分析为: 式2.3其中,当相当于频率,相当于
9、位移。其逆分析为:当, 式2.4 2.1.1 连续小波分析的时频窗口特性小波分析的时频窗口特性和短时傅立叶分析的时频窗口不一样。其窗口形状为两个矩形,窗口中心为,时窗宽和频窗宽分别为和。 图2.1 连续小波分析的时频窗口特性在实际应用中信号分析的要求是:信号高频部分对应时域中的快变成分,如陡峭的前沿、后沿、尖脉冲等,分析时对时域分辨率要求高,对频域分辨率要求低。信号低频成分对应时域中的慢变成分,分析对时域分辨率要求低,对频域分辨率要求高。连续小波函数窗口有“变焦”特性:当变小时,时域观察范围变窄,但频率观察的范围变宽,且观察的中心频率向高频处移动;当变大时,时域观察范围变宽,频域的观察范围变窄
10、,且分析的中心频率向低频处移动12-15。其中仅仅影响窗口在相平面上时间轴上的位置,而不仅影响窗口在频率轴上的位置,也影响窗口的形状。这样小波分析对不同的频率在时域上的取样步长是调节性的:在低频时小波分析的时间分辨率较差,而频率分辨率较高。在高频时小波分析的时间分辨率较高,而频率分辨率较低,这正符合低频信号变化缓慢而高频信号变化迅速的特点。这就是小波分析优于经典的傅立叶分析与短时傅立叶分析的地方。总的来说,小波分析比短时傅立叶分析有更好的时频窗口特性。2.1.2 连续小波分析的重要性质(1)线性性:一个多分量信号的小波分析等于各个分量的小波分析之和。(2)平移不变性:若的小波分析为,则的小波分
11、析为 。(3)伸缩共变性:若的小波分析为,则的小波分析为 。(4)自相似性:对应于不同尺度参数和不同平移参数的连续小波分析之间是自相似的。(5)冗余性:连续小波分析中存在信息表述的冗余度。2.2 小波分析和傅立叶分析的比较小波分析是傅立叶分析思想方法的发展和拓延,它自产生以来,就一直与傅立叶分析密切相关,可以说小波分析是一种广义上的傅立叶分析。小波分析的存在性证明,小波基的构造以及结果分析都依赖于傅立叶分析,两者是相辅相成的,比较后有以下特点:(1)傅立叶分析的实质是把能量有限的信号分解到以为正交基的空间上去;小波分析的实质是把能量有限的信号分解到和所构成的空间上去。(2)傅立叶分析用到的基本
12、函数只有,具有唯一性;小波分析用到的函数则不具有唯一性,同一个工程问题用不同的小波函数进行分析有时结果相差甚远。小波函数的选用是小波分析应用中的一个难题,目前往往是通过经验和不断地实验来选择小波函数。(3)在频域中,傅立叶分析具有良好的局部化能力,特别是对于那些频率成分比较简单的确定性信号,傅立叶分析很容易把信号表示成各频率成分的叠加和的形式。但是在时域中,傅立叶分析没有局部化能力,即无法从信号的傅立叶分析中看出在任一时间点附近的形态。事实上,是关于频率为的谐波分量的振幅,在傅立叶展开式中,它是由的整体性态所决定的。(4)在小波分析尺度中,尺度的值越大相当于傅立叶分析中的值越小。(5)在短时傅
13、立叶分析中,分析系数主要依赖于信号在片段中的情况,时间宽度是(因为是由窗函数唯一确定的,所以是一个定值)。在小波分析中,分析系数主要依赖于信号在片段中的情况,时间宽度是,该时间宽度是随着尺度变化而变化的,所以小波分析具有时间局部分析能力。(6)如果用信号通过滤波器来解释,小波分析和傅立叶分析的不同之处在于:对短时傅立叶分析来说,带通滤波器的带宽与中心频率无关;相反,小波分析带通滤波器的带宽则正比于中心频率,即为常数亦即滤波器有一个恒定的相对带宽,称之为等结构(为滤波器的品质因数)16-18。2.3 常用小波函数与标准傅立叶分析相比较,小波分析中应用到的小波函数不具有唯一性,即小波函数具有多样性
14、。但是小波分析在工程应用中一个十分重要的问题是最优小波基的选择问题,这是因为用不同的小波基分析同一个问题会产生不同的结果,在面对某一具体应用时,除了要选择比较各小波的基本身的的正交性,对称性,正则性,紧支集,消失矩等问题,同时还要注意具体的应用环境的制约。目前主要是通过小波分析方法处理信号的结果的好坏来判定小波基的好坏,并由此选定小波基。 一般而言,小波基的对称性和正交性不兼容,例如具有正交性的Daubechies小波就不具备对称性。正则性是函数光滑程度的一种描述,是函数领域能量的一种度量。我们说小波是具有紧支集的函数,是指使得函数不等于零的的取值范围是有限的,范围越小,表明小波支集的长度越短
15、,即支集越紧。函数的阶矩是指积分。阶消失矩就是指使得上式为零的那个。消失矩的实际影响是将信号能量相对集中在少数几个小波系数里,小波消失矩与小波支集的长度有着密切关系。根据不同的标准,小波函数具有不同的类型,这些标准通常有:(1) ,的支撑长度。即当时间或频率趋向于无穷大时,从一个有限值收敛到0的速度。(2) 对称性。在图像信号处理中对避免移相是有用的。(3) 和的消失矩阶数。对于数据压缩是非常有用的。(4) 正则性。对信号的重构以获得较好的平滑效果是非常有用的。在众多的小波基函数中,有一些小波函数被实践证明是非常有用的。下面介绍几种常用的小波函数: 1.Haar小波 Haar小波是小波分析中最
16、早用到的一个具有紧支撑的正交小波函数,同时也是最简单的一个函数,它是非连续的,类似一个阶梯函数。Haar函数的定义为下: 1 = -1 式2.5 0 others尺度函数为: 式2.6 2.墨西哥草帽(Mexican Hat)小波Mexican Hat函数为: 式2.7 它是Gauss函数的二阶导数,它在时域和频域都有很好的局部化,并且满足:, 式2.8由于它的尺度函数不存在,所以不具有正交性。 3.Daubechies(dbn)小波系Daubechies函数是由世界著名的小波分析学者Inrid Daubechies构造的小波函数,除了db1(即Haar小波)外,其他小波没有明确的表达式,但是
17、转换函数的平方模是很明确的。db函数是紧支撑校准正交小波,它的出现使得离散小波分析成为可能。假设,其中为二项式的系数,则有: 式2.9其中。小波函数和尺度函数的有效支撑长度为,小波函数的消失矩阶数为。db大多不具有对称性,但具有正交性。函数的正则性随着序号的增加而增加。 4.Biorthogonal(biorNr.Nd)小波系 Biorthogonal函数系的主要特性体现在具有线性相位性,它主要应用于信号的重构中,通常采用的一个办法是采用一个函数进行分解,用另外一个函数进行重构。众所周知,如果采用同一个滤波器进行分解和重构,对称性和重构的精确性将成为一对矛盾,而采用两个函数,则可以解决这个问题
18、。Biorthogonal函数系通常表示成biorNr.Nd的形式:Nr=1 Nd=1,3,5Nr=2 Nd=2,4,6,8Nr=3 Nd=1,3,5,7,9Nr=4 Nd=4Nr=5 Nd=5Nr=6 Nd=8其中,r表示重构(Reconstruction),d表示分解(Decomposition)。2.4 离散小波分析在实际应用中,尤其是在计算机上实现,连续小波必须加以离散化。所以针对连续小波和连续小波分析的离散化。这一离散化都是针对连续的尺度函数和连续平移参数的,而不是针对时间变量的,这与以前习惯的时间离散化不同,需要加以注意区别19。在连续小波中,考虑函数 式2.10为方便起见,在离散
19、化中,总是限制只取正值,这样相容性条件就变为: 式2.11 通常,把连续小波分析中的尺度参数和平移参数的离散化公式分别取做,这里,扩展步长是固定值,为方便起见,总是假定,所以对应的离散小波函数就写作: 式2.12而离散化小波分析系数则可以表示为: = 式2.13其重构公式为: 式2.14其中,是一个与信号无关的常数。 然而,怎样选择和才能保证重构信号的精度呢?显然,网格点应该尽可能地密(即和尽可能地小),因为如果网格点越稀疏,使用的小波函数,和离散小波系数就越少,信号重构的精确度也就会越低。 为了使小波分析具有可变化的时间和频率分辨率,适应待分析信号的的非平稳性,需要改变和的大小,以使小波分析
20、具有“变焦距”的功能。在实际应用中采用的是动态的采样网格,最常用的是二进制的动态采样网格:,每个网格点对应的尺度为,而平移为。由此得到的小波 式2.15称为二进小波(Dyadic Wavelet)。二进小波对信号的分析具有变焦功能。假定一开始选择一个放大倍数,它对应为观测信号的某部分内容。如果想进一步观看信号更小的细节,就需要增加放大倍数,即减小的值;反之,如果想了解信号更宏观的内容,则可以减小放大的倍数,即增大的值,在这个意义上,小波分析被称作数学显微镜。2.5 多分辨率分析 Meyer于1986年创造性地构造出具有一定衰减性的光滑函数,其二进制伸缩与平移构成的规范正交基,才使小波得到真正的
21、发展。1988年S.Mallat在构造正交小波基时提出了多分辨分析MRA(Multi-Resolution Analysis)的概念,从空间的概念上形象地说明了小波的多分辨率特性,将此之前的所有正交小波基的构造法统一起来,给出了正交小波的构造方法以及正交小波分析的快速算法,即Mallat算法。Mallat算法在小波分析中的地位相似于快速傅立叶分析算法在经典傅立叶分析中的地位。关于多分辨分析的原理,我们以一个三层的分解进行说明,其小波分解树如图2.2 所示。S D1A1 D2A2 D3A3 图2.2 三层多分辨率分析树结构图从图中可以看出,多分辨率分析只是对低频部分进行一步分解,而高频部分则不予
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用物理学论文 28973 应用物理学 论文
链接地址:https://www.31ppt.com/p-4201058.html