分子生物学论文.doc
《分子生物学论文.doc》由会员分享,可在线阅读,更多相关《分子生物学论文.doc(108页珍藏版)》请在三一办公上搜索。
1、分子生物学论文外源一氧化氮促进小麦种子萌发及其信号作用机制研究目 录摘 要IABSTRACTIII缩略语词汇表V引言1文献综述3 种子萌发机理的研究进展3 谷物种子中淀粉的降解及其水解酶16 植物一氧化氮(NO)研究进展20参考文献25第一部分 NO供体对渗透胁迫下小麦种子萌发与抗氧化代谢的影响33第一章 NO供体对渗透胁迫下小麦种子吸胀萌发和水解酶活性的影响331 材料与方法352 结果与分析373 讨论44第二章 NO供体对渗透胁迫下小麦种子萌发过程中抗氧化代谢的调控501 材料与方法512 结果与分析533 讨论58第二部分 小麦种子萌发早期b-淀粉酶对NO的快速应答及其生化特性研究61
2、第三章 小麦种子萌发早期b-淀粉酶对NO的快速应答611 材料与方法632 结果与分析653 讨论80第四章 小麦种子萌发早期NO诱导的b-淀粉酶同工酶的特性841 材料与方法852 结果与分析863 讨论91全文结论94创新之处95存在的问题与展望96致谢98外源一氧化氮促进小麦种子萌发及其信号作用机制研究摘 要一氧化氮(Nitric oxide, NO)供体硝普钠(Sodium nitroprusside, SNP)能明显促进渗透胁迫下小麦种子的吸胀、萌发和胚芽胚根的生长,加速贮藏物淀粉降解为还原糖及可溶性小分子糖类;胁迫解除后,仍能维持种子较高的活力从而有利于幼苗的生长。进一步研究发现,
3、SNP还能明显诱导胁迫下种子淀粉酶活性的上升,轻微提高蛋白水解酶活性,加速淀粉胚乳的液化或溶解,而SNP对酯酶影响不大。在探察NO对渗透胁迫下小麦种子萌发过程中抗氧化代谢时发现,一氧化氮(NO)供体硝普钠(SNP)能显著诱导渗透胁迫下CAT(catalase)、APX(acorbate peroxidase)活力的上升和脯氨酸含量积累,抑制LOX(lipoxygenase)活性,降低H2O2与MDA(malondialdehyde)的含量,从而提高渗透胁迫下小麦种子萌发过程中抗氧化能力,为种子的正常萌发提供一个良好的细胞内环境。有意思的是,在小麦种子正常萌发早期,SNP处理便可以显著诱导内源葡
4、萄糖、果糖和蔗糖含量的上升;进一步采用各种糖和SNP,并结合NO清除剂处理小麦种子,发现糖信号可能也介导了萌发早期小麦种子中淀粉酶的激活机制,且与NO之间存在着对话(Cross-talk)现象。而且在正常萌发条件下NO诱导切胚半粒小麦种子萌发早期(6 h)的淀粉酶活力上升可能与GA3无直接相关。并对NO诱导小麦种子淀粉酶活力的可能信号作用机理及其与GA、糖信号通路的关系进行了探讨。进一步研究外源一氧化氮(NO)与赤霉素(GA)对小麦种子萌发早期(12h)淀粉酶调控的信号机制发现,在萌发早期(12h内),-淀粉酶和b-淀粉酶都不受GA所调控;而b-淀粉酶对NO存在着快速应答现象,但是,-淀粉酶却
5、没有这种应答关系。NO诱导b-淀粉酶活性的迅速上升可能与游离态b-淀粉酶聚合体的解聚以及结合态b-淀粉酶的直接释放有关;而NO促进的蛋白水解酶活性的轻微上升,对b-淀粉酶的激活或释放没有贡献;而且NO对b-淀粉酶单体也没有激活效应。此外,我们的研究结果还表明,b-淀粉酶对NO的快速应答现象同样存在于其它物种,如大麦、大豆、水稻、西瓜、抑南芥等种子的萌发早期,暗示了b-淀粉酶对NO的快速应答可能是种子萌发早期的一个普遍机制。采用-淀粉酶活性大小存在差异的三个小麦品种研究发现,-淀粉酶活性与种子的萌发速率呈正相关,同时也暗示了,在正常条件下,高活性或高含量的-淀粉酶可能是促进种子萌发的诱因之一。同
6、时结合-淀粉酶抑制剂的实验结果也表明,-淀粉酶在小麦种子萌发过程中起着重要作用。研究小麦种子萌发早期NO诱导的b-淀粉酶同工酶的特性发现,萌发早期小麦种子中的b-淀粉酶最适pH为4.5-6.5,在pH3.0-9.0范围内较稳定;最适温度为40,高于55时活力丧失,表现了其对热的不稳定性;自由态的种子中预存的自由态I型-淀粉酶同工酶pI在4.8-6.0范围,中性偏酸;依赖于NO而产生的II型-淀粉酶同工酶的pI在6.0-7.0范围,偏中性。抑制剂实验表明,萌发早期所有的-淀粉酶均含有巯基。进一步采用蛋白质合成抑制剂的实验结果表明,依赖于NO诱导的-淀粉酶同工酶在种子萌发早期(12h)不是从头合成
7、的。关键词: 一氧化氮;种子萌发;渗透胁迫;小麦(Triticum aestivum L.);赤霉素;-淀粉酶SIGNAL MECHANISMS OF EXOGENOUS NITRIC OXIDE ON THE PROMOTION OF WHEAT SEEDS GERMINATIONSTRESSABSTRACTEffects of nitric oxide (NO) donor, sodium nitroprusside (SNP) on the germination and activities of hydrolytic enzymes in wheat (Triticum aestiv
8、um L.) seeds were researched. Treatment with SNP dramatically promoted imbibition and germination of wheat seeds, increased the elongation of roots and shoots, accelerated the degradation of reserve starch and the liquefaction of endosperms under osmotic stress. After osmotic stress removed, the whe
9、at seed treated with SNP could also retain higher viability. Further studies showed that SNP could induce amylase activities apparently, enhance protease activities slightly, while exhibit no roles in esterase. The effects of nitric oxide (NO) donor, sodium nitroprusside (SNP) on the antioxidant met
10、abolism in germinating wheat seeds were also investigated. Treatment with SNP dramatically promoted the activities of CAT, APX and the contents of proline simultaneously, inhibited activities of LOX, decreased the contents of H2O2 and MDA. All of these functions were beneficial for improving the ant
11、ioxidant capacity during germination of wheat seed under osmotic stress.Moreover, SNP could strongly increase the content of sugars, such as fructose, glucose and sucrose in wheat seeds during early germination (12 h) under normal conditions. When the seeds treated with SNP with or without PTIO, an
12、NO scavenger, and different exogenous sugars, including fructose, glucose, sucrose and sorbitol, mannitol as controls, it was found that there might be existing a cross-talking between NO and sugars signaling in the activation of amylase in the early stage of germination, while GA acted no such acti
13、ons in the same period.The effects of nitric oxide (NO) and gibberellic acid (GA3) on the responses of amylases in wheat seeds were further investigated during the first 12 h of germination. GA3 had no effects on the activities of -amylase (EC 3.2.1.1) or -amylase (EC 3.2.1.2), either in intact seed
14、s or embryoless halves within 12 h. In contrast, addition of sodium nitroprusside (SNP), an NO donor, was able to induce a rapid increase in -amylase activity without affecting -amylase. Furthermore, the rapid response of -amylase to SNP in wheat seeds could be attributed to NO and was approximately
15、 dose-dependent. Some other aspects of SNP induction of amylase isozymes were also characterized. Further investigations showed that SNP might play an interesting role in the dissociation of free -amylase from small homopolymers or heteropolymers. Furthermore, SNP also directly induced the release o
16、f bound -amylase from glutenin and its crude enzyme preparation. However, the slight increase in protease induced by SNP might not be responsible for this action. Interestingly, based on the fact that the rapid response of -amylase to NO also existed in seeds of other species, such as barley, soybea
17、n, rice and watermelon, it might be a universal event in early seed germination.Activities of -amylase in seeds of three wheat species and their germination index were investigated at the same time. It showed that there was a positive correlationship between activities of -amylase and the index of g
18、ermination in wheat seeds. Experiment of -amylase inhibitors also showed us -amylase played a key role in wheat seeds germination. In this paper, characterization of beta-amylase isozymes induced by NO was further investigated. The pI of the SNP-induced beta-amylases, Type, as determined by IEF, was
19、 in the range 6.0-7.0, and that of the intrinsically active ones, Type, in the range 4.8-6.0. The optimum pH of these amylases was found to be 4.5-6.5, and they were stable in the pH range 3.0-9.0. The optimum temperature of these enzymes was 40, but they active even up to 55. Further investigations
20、 using protein synthesis inhibitors, such as actidione D and chloromycetin, showed that beta-amylase isozymes induced by NO were not synthesized de novo.Keywords: Nitric oxide; Seed Germination; Osmotic stress; Gibberellin; wheat (Triticum); -Amylase缩略语词汇表ABAabscisic acid脱落酸APXacorbate peroxidase抗坏血
21、酸过氧化物酶AsAascorbic acid抗坏血酸BSAborine serum albumin牛血清白蛋白CATcatalase过氧化氢酶CKscytokinins细胞分裂素DTTdithiothreitol二硫苏糖醇DWdry weight干重EDTAethylenediamine tetraacetic acid乙二胺四乙酸FWfresh weight鲜重GAgibberellin赤霉素GA3gibberellic acid赤霉酸H2O2hydrogen peroxide过氧化氢IEFisoelectric focusing等电聚焦IAAindole acetic acid吲哚乙酸LO
22、Xlipoxygenase脂氧合酶MDAmalondialdehyde丙二醛2-ME2-Mercaptoethanol-巯基乙醇NADPHreduced nicotinamideadenine还原型辅酶dinucliotide phosphateNOnitric oxide一氧化氮NOSnitric oxide synthase一氧化氮合酶NRnitrate reductase硝酸还原酶O2.-superoxide anion超氧阴离子PAGEpolyacrylamide gel electrophoresis聚丙烯酰胺凝胶电泳PAR4-(2-pyridylazo)resorcinol4-(2
23、-吡啶)间苯二酚PBSphosphate buffer solution磷酸缓冲液PCMBp-Chloromercuribenzoate氯化苯汞PMSFphenylmethylsulphonyl fluoride苯甲基磺酰氟化物PODperoxidase过氧化物酶PVPpolyvinylpyrrolidone聚乙烯吡咯烷酮PRpathgen-related protein病原相关蛋白RNSreactive nitrogen species活性氮ROSreactive oxygen species活性氧SAsalicylic acid水杨酸SABPsalicylic acid-binding p
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分子生物学 论文

链接地址:https://www.31ppt.com/p-4200747.html