离散数学及其应用英文版第6版课后答案(美Kennenth H.Rosen 著) 机械工业出版社.doc
《离散数学及其应用英文版第6版课后答案(美Kennenth H.Rosen 著) 机械工业出版社.doc》由会员分享,可在线阅读,更多相关《离散数学及其应用英文版第6版课后答案(美Kennenth H.Rosen 著) 机械工业出版社.doc(39页珍藏版)》请在三一办公上搜索。
1、P.161.14.f) If I did not buy a lottery ticket this week, then Idid not winthe million dollar jackpot on Friday.g) I did not buy a lottery ticket this week, and I did not win the million dollar jackpot on Friday.h ) Either I did not buy a lottery ticket this week, or else I did buy one and won the mi
2、llion dollar jackpot on Friday.10.a) r qb) p q rc) r pd) p q r e) (p q) r f) r ( q p)20.a) If I am to remember to send you the address, then you will have to send me an e-mail message.(This has been slightly reworded so that the tenses make more sense.)b) If you were born in the United States, then
3、you are a citizen of this country.c) If you keep your textbook, then it will be a useful reference in your future courses.(The word then is understood in English, even if omitted.)d) If their goaltender plays well, then the Red Wings will win the Stanley Cup.e) If you get the job, then you had the b
4、est credentials.f) If there is a storm, then the beach erodes.g) If you log on to the server, then you have a valid password.h) If you dont begin your climb too late, then you will reach the summit.33.c) pqr(p q) (p r) TTTTTTFTTFTTTFFTFTTTFTFTFFTTFFFTP.261.28.a) Kwame will not take a job in industry
5、 and he will not go to graduate school.b) Yoshiko doesnt know Java or she doesnt know calculus.c) James is not young or he is not strong.d) Rita will not move to Oregon and she will not move to Washington.10.a) pqppqp(pq)p(pq)qTTFTFTTFFTFTFTTTTTFFTFFTc)pqp qp(p q)p(p q) qTTTTTTFFFTFTTFTFFTFT12.a) As
6、sume the hypothesis is true. Then p is false. Since pq is true, we conclude that q must be true.Here is a more algebraic solution:p (p q)q p(p q)q p(p q)q p(p q)q (p q)(p q) Tc) Assume the hypothesis is true. Then p is true, and since the second part of the hypothesis is ture, we conclude that q is
7、also true, as desired.24.pqrp qp r(p q) (p r)q rp (q r)TTTTTTTTTTFTFTTTTFTFTTTTTFFFFFFFFTTTTTTTFTFTTTTTFFTTTTTTFFFTTTFT30.pqrp qp rq r(p q)(p r)(p q)(p r) (q r)TTTTTTTTTTFTFTFTTFTTTTTTTFFTFFFTFTTTTTTTFTFTTTTTFFTFTTFTFFFFTFFT51.(p p) q )(p p) q )9.77. The graph is planar.a d e cf b20. The graph is no
8、t homeomorphic to K3,3, since by rerouting the edge between a and h we see that it is planar.22. Replace each vertex of degree two and its incident edges by a single edge. Then the result is K3,3 : the parts are a,e,i and c,g,k. Therefore this graph is homeomorphic to K3,3.23. The graph is planar.25
9、. The graph is not planar.9.83. 3 A F BC ED8. 39. 210. 417.time slot 1: Math 115, Math 185;time slot 2: Math 116, CS 473;time slot 3: Math 195, CS 101;time slot 4: CS 102time slot 5: CS 273P.46 1.33. a) true b) false c) false d) false 5. a) There is a student who spends more than 5 hours every weekd
10、ay in class.b) Every student spends more than 5 hours every weekday in class. c) There is a student who does not spend more than 5 hours every weekday in class.d) No student spends more than 5 hours every weekday in class. 9. a) x(P(x)Q(x)b) x(P(x)Q(x)c) x(P(x)Q(x)d) x(P(x)Q(x)16. a) true b) false c
11、) true d) false24. Let C(x) be the propositional function “x is in your class.” a) x P(x) and x(C(x) P(x), where P(x) is “x has a cellular phone.”b) x F(x) and x(C(x)F(x), where F(x) is “x has seen a foreign movie.”c) x S(x) and x(C(x)S(x), where S(x) is “x can swim.”d) x E(x) and x(C(x) E(x), where
12、 E(x) is “x can solve quadratic equations.”e) x R(x) and x(C(x)R(x), where R(x) is “x wants to be rich.”62. a) x (P(x)S(x) b) x(R(x)S(x) c) x (Q(x)P(x) d) x(Q(x)R(x)e) Yes. If x is one of my poultry, then he is a duck (by part(c), hence not willing to waltz (part (a). Since officers are always willi
13、ng to waltz (part (b), x is not an officer.P.591.412. d) x C(x, Bob)h) x y (I(x) (x y) I(y)k) x y( I(x) C(x, y)n) x y z (x y) (C(x, z) C(y, z)14.a) x H(x), where H(x) is “x can speak Hindi” and the universe of the discourse consists of all students in this class.b) x y P(x, y), where P(x, y) is “x p
14、lays y.” and the universe of the discourse for x consists of all students in this class, and the universe of the discourse for y consists of all sports.c) x A(x) H(x) , where A(x) is “x has visited Alaska.” , H(x) is “x has visited Hawaii” and the universe of the discourse for x consists of all stud
15、ents in this class.d) x y L(x, y), where L(x, y) is “x has learned programming language y” and the universe of the discourse for x consists of all students in this class, and the universe of the discourse for y consists of all programming languages.e) x z y (Q(y, z) P(x, y), where P(x, y) is“ x has
16、taken course y.”, Q(y, z) is “course y is offered by department z.”, and the universe of the discourse for x consists of all students in this class, the universe of the discourse for y consists of all courses in this school, and the universe of the discourse for z consists of all departments in this
17、 school. f) x y z ( (x y) P(x, y) (x y z) P(x, z), where P(x, y) is “ x and y grew up in the same town.” and the universe of the discourse for x, y, z consists of all students in this class.g) x y z C(x, y) G(y, z), where C(x, y) is “x has chatted with y”, G(y, z) is “y is in chat group z”, the univ
18、erse of the discourse for x, y consists of all students in this class, and the universe of the discourse for z consists of all chat group in this class.24. a) There is an additive identity for the real numbers.d) The product of two nonzero numbers is nonzero for the real numbers.38.b) There are no s
19、tudents in this class who have never seen a computer.d) There are no students in this class who have taken been in at least one room of every building on campus.1.5(1) (r(qp)(p(qr) (r(qp)(p(qr) (qp)(pqr) (pqrq)(pqrp) (pqr) 3 0,1,2,4,5,6,7(2)P.726. Let r be the proposition It rains, let f be the prop
20、osition It is foggy, let s be the proposition The sailing race will be held, let l be the proposition The lifesaving demonstration will go on, and let t be the proposition The trophy will be awarded. We are given premises (rf)(sl), st, and t. We want to conclude r. We set up the proof in two columns
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学及其应用英文版第6版课后答案美Kennenth H.Rosen 著 机械工业出版社 离散数学 及其 应用 英文 课后 答案 Kennenth Rosen 机械工业 出版社
链接地址:https://www.31ppt.com/p-4200610.html