《高等数学》教案精编版.doc
《《高等数学》教案精编版.doc》由会员分享,可在线阅读,更多相关《《高等数学》教案精编版.doc(93页珍藏版)》请在三一办公上搜索。
1、高等数学授课教案第一讲 高等数学学习介绍、函数教学目的:了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。重 难 点:数学新认识,基本初等函数,复合函数教学程序:数学的新认识函数概念、性质(分段函数)基本初等函数复合函数初等函数例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前 言:本讲首先是高等数学的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。一、新教程序言1、为什么要重视数学学习(1)文化基础数学是一种文化,它的准确
2、性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。2、对数学的新认识(1)新数学观数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。(3)新数学
3、素质教育观数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。见教材“序言”二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。(用变化的观点定义函数),记:(说明表达式的含义) (1)定义域:自变量的取值集合(D)。 (2)值 域:函数值的集合,即。 例1、求函数的定义域?2、函数的图像:设函数的定义域为D,则点集 就构成函数的图像。例如:熟悉基本初等函数的图像。3、分段函数:对自变量的不同取值范围,函数用不同的表达式。 例如:符号函数、狄立克莱函数、取整函数等。分段函数的定义域:不同自变量取值范围的并集。例2、作函数的图像?例3、求函数三、基本初等函数 熟记:五种基本初
4、等函数的定义域、值域、图像、性质。四、复合函数:设y=f(u),u=g(x),且与x对应的u使y=f(u)有意义,则y=fg(x)是x的复合函数,u称为中间变量。说 明:(1)并非任意几个函数都能构成复合函数。 如:就不能构成复合函数。 (2)复合函数的定义域:各个复合体定义域的交集。(3)复合函数的分解从外到内进行;复合时,则直接代入消去中间变量即可。 例5、设例6、指出下列函数由哪些基本初等函数(或简单函数)构成? (1) (2) (3) 五、初等函数:由基本初等函数经有限次复合、四则运算而成的函数,且用一个表达式所表示。说 明:(1)一般分段函数都不是初等函数,但是初等函数; (2)初等
5、函数的一般形成方式:复合运算、四则运算。思考题:1、 确定一个函数需要有哪几个基本要素? 定义域、对应法则2、 思考函数的几种特性的几何意义? 奇偶性、单调性、周期性、有界性3、任意两个函数是否都可以复合成一个复合函数?你是否可以用例子说明?不能探究题: 图15 时间 一位旅客住在旅馆里,图15描述了他的一次行动,请你根据图形给纵坐标赋予某一个物理量后,再叙述他的这次行动.你能给图15标上具体的数值,精确描述这位旅客的这次行动并用一个函数解析式表达出来吗? 小 结:函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映;复合函数反映了事物联系的复杂性;分段函数反映事物联系的多样性。作
6、 业:P4(A:2-3);P7(A:2-3)课堂练习(初等函数)【A组】1、求下列函数的定义域?(1) (2) (3) (x-1) (4) 2、判定下列函数的奇偶性?(1) (2) (3) 3、作下列函数的图像?(1) (2) (3) 4、分解下列复合函数?(1) (2) (3) (4) 【B组】1、证明函数为奇函数。2、将函数改写为分段函数,并作出函数的图像?3、设?4、设=,求,?数学认识实验: 初等函数图像认识1、幂函数:(如)2、指数与对数函数:(如) 3、三角函数与反三角函数:() 4、多项式函数:() 5、分段函数:() 第二讲 导数的概念(一)、极限与导数教学目的:复习极限的概念
7、及求法;理解导数的概念,掌握用定义求导数方法。重 难 点:求极限,导数定义及由定义求导法教学程序:极限的定义及求法(例)导数的引入(速度问题)导数的概念导数与极限基本初等函数的导数(定义法)例子(简单)授课提要:前 言:在前面的教学中,我们已讨论了变量间的关系(函数),本节将复习函数的变化趋势(极限),在此基础上讨论函数的变化率问题(即函数的导数)。导数是高数的重点,它的本质是极限(比值的极限),在现实中有极丰富的应用。一、理论基础极 限(复习)1、极限的概念(略讲函数在某点的极限定义)2、极限的四则运算法则(略)3、求函数的极限(几类函数的极限)(1)若为多项式,则例1:求下列极限(1) (
8、2) (3) (2)若为有理分式且,则(代入法)例2:求下列极限(1) (2) (3) (3)若分式,当时,则用约去零因子法求极限例3:求下列极限(1) (2) (3) (4)若分式,当时,分子分母都是无穷大,则适用无穷小分出法求极限。例4:求下列极限(1) (2) (3) 3、两个重要极限(1) (2)说明:其中可以是的形式,且当时,。例5:求下列极限(1) (2) (3) (4) 二、导数定义(复习增量的概念)引例1、速度问题(自由落体运动)引例2、切线问题(曲线) 以上两个事例具体含义各不相同,但从抽象的数量关系来看,都是要求函数y关于自变量x在某一点处的变化率,即计算函数增量与自变量增
9、量比值的极限,这种特殊的极限就是函数的导数。解决问题的思路:1、 自变量x作微小变化Dx,求出函数在自变量这个小段内的平均变化率,作为点处变化率的近似值;2、 对求Dx0的极限,若它存在,这个极限即为点处变化率的精确值。定 义:设函数在点及附近有定义,当在点取得增量时,相应函数取得增量,若当时,比值的极限存在,则称此极限值为在处的导数或微商。记,即说明:(1)比值是函数在上的平均变化率;而是在处的变化率,它反映函数在点随自变量变化的快慢程度;(2)若不存在(包括),则称在点不可导;(3)若在(a,b)内每点可导,则称函数在(a,b)内可导,记,称为导函数,简称导数。(4)f(x)是x的函数,而
10、f(x0)是一个数值,f(x)在点处的导数f(x0)就是导函数f(x)在点x0处的函数值。三、导数与极限的关系导数是一种特殊(比值)的极限,即有导数-有极限,反之不成立。四、基本初等函数的导数(定义) 由定义知求函数导数的步骤:(三步骤)(1)求增量;(2)求比值;(3)求极限。例6、由定义求函数的导数?例7、由定义求函数的导数?(推导)思考题:1、 是否存在,为什么?02、若曲线= 在处切线斜率等于 3 ,求点的坐标。3、 已知,利用导数定义求极限。0探究题:从求变速直线运动物体的瞬间速度问题解决方法中,你对“极限法”有什么体会? 近似转化为精确的数学方法小 结:导数的本质从微观(局部)上研
11、究非均匀量(如:速度、密度、电流、电压等)的变化率问题,是处理非均匀量的“除法”;其思想方法:(1)在小范围内以“匀”代“不匀”或“不变”代“变”,获得近似值;(2)利用极限思想使“近似值”转化为“精确值”。从函数的观点看,导数是描述函数的局部线性形态,即可导函数表示的曲线在局部都可以近似为一条直线(切线),凭着切线的斜率,可以研究函数的整体性质(导数应用中的单调性、极值等)。作 业:P22(A:1-3;B:3-4)课堂练习(导数的概念一)【A组】1、求下列极限 (1) (2) (3) (4) (5) (6)2、求极限? 3、求极限:?4、已知,求a的值? 25、用导数定义,求函数在x=1处的
12、导数?6、设物体的运动方程为,求(1)物体在t=2秒和t=3秒间的平均速度?(2)求物体在t=2秒时的瞬时速度?【B组】1、设? 2、设函数? 23、证明导数公式:4、一药品进入人体t小时的效力,求t=2,3,4时的效力E的变化率?5、设 A 。A、左右导数都存在 B、左导数存在,右导数不存在C、右导数存在,左导数不存在 D、都不存在6. 若(为常数),试判断下列命题是否正确。全部(1)在点 处可导; (2)在点 处连续;(3)= ;数学认识实验: 两个重要极限的图像认识1、极限:2、极限:3、等价无穷小的直观认识:()第三讲 导数的概念(二)教学目的:熟悉导数基本公式;理解导数的几何意义,会
13、求切线方程。重 难 点:基本导数公式,导数的几何意义(求切线方程)教学程序:复习导数定义基本导数公式例子(求导数)导数的几何意义例子(切线方程)导数的物理意义(例子)授课提要:一、基本初等函数的导数例1、求的导数?(由导数的定义推导)于是我们有公式:同样,由定义可得基本初等函数的导数公式: 二、导数的运算法则(u,v为可导函数)1、代数和:2、数 乘: 例2、求下列函数的导数(1) (2) (3) (4) 例3、求函数在给定点的导数值?(1) (2) 三、导数的几何意义(作图说明) 结论:表示曲线y=f(x)在点(x0,f(x0))的切线斜率。例4、求曲线在点(1,0)处的切线方程?例5、设f
14、(x)为可导函数,且,求曲线y=f(x)在点(1,f(1))处的切线斜率? 导数定义及几何意义四、导数的物理意义 结论:设物体运动方程为,则表示物体在时刻t的瞬间速度。例6、设物体的运动方程为,求物体在时刻t=1时的速度?例7、求曲线上一点,使过该点的切线平行于直线。例8、设某产品的成本满足函数关系:(x为产量),求x=2时的边际成本,并说明其经济意义。思考题: 与有无区别?,探究题:导数的值可不可以为负值?举例说明。可以小 结:导数的美学意义:局部线性之美()。它将可导曲线在局部线性化,它是由函数局部性质研究函数整体性质的工具和方法。作 业:P25(A:1);P28(A:1,3)课堂练习(导
15、数概念二)【A组】1、求下列函数的导数(1) (2) (3) (4) (5) 2、求下列函数的导数(1) (2) (3) (4) 3、求函数在x=1处的导数值?4、设5、设物体的运动方程为,求时刻t=3时的速度?6、 抛物线 = 在何处切线与轴正向夹角为,并且求该处切线的方程.【B组】1、一球体受力在斜面上向上滚动,在t秒末离开初始位置的距离为,问其初速度为多少?何时开始向下滚动?2、已知曲线与相交于点(1,1),证明两曲线在该点处相切,并求出切线方程?数学认识实验: 导数的几何意义和美学价值PQ1、导数的定义(切线问题)2、导数的几何意义:()3、导数的美学意义:曲线的局部线性化。(1)在x
16、=0处比较:曲线与切线;(2)在x=1处比较:曲线与切线。 第四讲 求导公式与求导法则(一)教学目的:掌握基本导数公式与导数运算法则,会求简单函数的导数。重 难 点:基本导数公式与法则教学程序:基本公式运算法则例子二阶导数的定义及求法授课提要:一、基本导数公式 由导数的定义,我们可以得到如下基本导数公式:二、导数的四则运算法则设u、v为可导函数,则1、 2、3、 4、例1、求下列函数的导数(1) (2) (3) (4) 例2、求函数在给定点的导数值?(1) (2) 例3、设例4、已知曲线的切线与直线垂直,求此切线方程?三、二阶导数1、定义:若导函数再求导数,称为的二阶导数。记:2、求法:由定义
17、知,求二阶导数的方法与求一阶导数的方法一致。例5、求下列二阶导数(1) (2) (3) (4)3、二阶导数的物理意义 设物体的运动规律为:,则表示物体在时刻t的加速度。例6、设物体的运动方程为:,求t=2时的速度和加速度?思考题: 1. 思考下列命题是否成立?(1)若,在点处都不可导,则点处也一定不可导.答:命题不成立.如:= =,在 = 0 处均不可导,但其和函数+= 在= 0 处可导.(2)若在点处可导,在点处不可导,则+在点处一定不可导.答:命题成立.原因:若+在处可导,由在处点可导知=+在点处也可导,矛盾.探究题:某产品的需求方程和总成本函数分别为,其中为销售量,为价格。求边际利润,并
18、计算和时的边际利润,解释所得结果的经济意义。导数的经济意义 小 结:导数的物理意义更深层次反映了导数的本质:研究非匀速物体运动的变化率。指路程对时间的变化率,指速度对时间的变化率。二阶导数的几何意义:反映曲线的凹向。作 业:P30(A:1-2)小知识:数学的三次危机第一次数学危机:无理数的产生。(单位正方形的对角线长)第二次数学危机:微积分的产生和完善。(极限和无穷小的定义)第三次数学危机:集合论的产生。(罗素悖论)课堂练习(导数公式与法则一)【A组】1、求下列导数(1) (2) (3) (4) 2、曲线在何处有水平切线? x=-2/33、已知曲线的切线与直线垂直,求此切线方程?e4、求下列二
19、阶导数(1) (2) (3) 【B组】1、设曲线在点(1,1)处的切线与x轴的交点为(xn,0),求极限?2、若? 13、设,求? -24、已知,二阶连续可导,求? 5、设某种汽车刹车后运动规律为,假设汽车作直线运动,求汽车在秒时的速度和加速度。数学认识实验: 函数与导函数的图像比较()第五讲 求导法则(二)、连续与导数教学目的:了解函数的连续性的概念,理解连续与导数的关系。重 难 点:基本导数公式,连续的几何直观、连续与可导的关系教学程序:复习基本导数公式、法则连续概念(极限定义)连续的条件初等函数的连续性可导与连续(例)连续函数的极限(例子)授课提要:一、复习基本导数公式和法则 举 例:(
20、略)二、连续的概念(作图直观理解) 1、定 义:设函数在x0点及附近有定义,当时,有,则称f(x)在x0点连续。说明:连续是一种特殊的极限。连续有极限,反之不成立。例1、试证在x=0处连续?三、函数连续的条件()f(x)在x0点及附近有定义()f(x)在x0点的极限存在()极限值等于函数值。例2、讨论函数在x=0处的连续性?四、初等函数的连续性 初等函数在定义区间内都是连续的。其图像是一条连绵不断的曲线。五、可导与连续1、可导与连续的图象特征(1)连续函数的图像是一条连绵不断的曲线。(作图示例) (2)可导函数的图像不仅连绵不断,并且曲线具有平滑性(无尖点、折点)2、可导与连续的关系定理:若函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 教案 精编
链接地址:https://www.31ppt.com/p-4198795.html