等价无穷小量在求极限中的应用毕业论文.doc
《等价无穷小量在求极限中的应用毕业论文.doc》由会员分享,可在线阅读,更多相关《等价无穷小量在求极限中的应用毕业论文.doc(16页珍藏版)》请在三一办公上搜索。
1、 数理学院JINGGANGSHAN UNIVERSITY毕业论文(设计)等价无穷小量在求极限上的应用 姓 名 齐长春 单位地址 井冈山大学 邮政编码 343009 专 业 数学与应用数学 系(院) 数理学院 指导教师 李冬生 2013年5月1日目 录摘要1引言2一、无穷小量31.1 无穷小量的定义31.2 等价无穷小量的一些基本性质31.3无穷小量阶的比较及等价无穷小量的定义3二、等价无穷小量42.1等价无穷小量的重要性质42.2一些常用的等价无穷小量4三、极限问题的解法53.1可以直接求极限的问题53.2 用两个重要极限求极限53.3用洛必达法则求极限63.4用等价无穷小量求极限73.5等价
2、无穷小代换的局限性83.6阶数的求法93.7利用泰勒公式求函数极限9四、等价无穷小替换的优势11五、方法总结12参考文献13英文摘要14【摘 要】无穷小量从提出到正式的定义经过了一番曲折,还引发了一次数学危机,等价无穷小量的提出,在微积分领域可以说具有划时代的意义,它为解决正项级数与极限等类型的问题带来了很大的方便,特别是在极限问题上。这里我们只重点讨论它在求极限方面的应用以及优势,等价无穷小代换是一种应用很广泛的求极限方法,但是要注意遵守无穷小量的替换法则,才能使得计算简化而又不出错,当然本文会具体去讨论应用中要注意的事项。正确使用等价无穷小量能解决洛必达法则所不能解决的问题。在求极限问题中
3、,方法有很多,比如利用两个重要的极限求极限,利用洛必达法则还有等价无穷小替换以及泰勒公式等方法求极限,这些方法都有它的优越性,但是我们总想要去寻求一种最简单便捷的方法得到结果,其中等价无穷小替换有着不可替代的地位,以及优越的简化计算的作用。【关键词】 等价无穷小量;洛必达法则;两个重要的极限;泰勒公式;优越性。引言微积分还有一个名称,叫“无穷小分析”。其实微积分是由牛顿和莱布尼茨独自完成的,一开始他们就是从直观的无穷小量开始的。数学中的分析学早期就叫无穷小分析,无穷小量在当时是一个让人头疼的概念。按照牛顿的流数法来计算导数的方法如下 : 算法虽然很简单,可是确实有矛盾。我们知道,要使等式中式成
4、立,则必需0,而要式成立,则需。问题就成了讨论到底是不是0? 如果是零0,怎么能用它做除数? 如果不是,又怎么能把包含着的项去掉呢?这也是当时微积分的一个悖论贝克莱悖论。就这样,在完善微积分基础理论问题的过程中,数学界出现了比较混乱的局面,并由此引发了第二次数学危机。直到柯西系统地发展了极限理论。他认为,如果硬要把这里的作为确定的量,即使是0,都不算准确,它会与极限的定义发生矛盾;应该是要它如何小就如何小的量,将这样一个量命名为无穷小量。所以,本质上它是以零为极限的变量。定义为变量,才解开了人们对无穷小量概念的模糊认识。第二次数学危机结束,贝克莱悖论得到解决。改用极限的概念 ,那么求导数的过程
5、就可以改写为:这样,就没有矛盾了。于是,无穷小量正式诞生了。 一、无穷小量1.1无穷小量的定义设f在某空心邻域内有定义.若,则称为当时的无穷小量。1.2无穷小量的一些基本性质根据无穷小量的定义,可以类似地定义当,以及时的无穷小量与有界量。这里我们很容易判断,如函数,均为当时的无穷小量。 在这里我总结了一些无穷小量的性质:(1)无穷小量是一个变量。在变化过程中以零为极限. 如函数 ,当时的无穷小量,但当时不是无穷小量。 (2) 绝对值非常小的数并不就是无穷小量;无穷小量是无限趋近于0 而又不等于0的量。(3)在一次运算过程中,有限个无穷小量的和、差、积还是无穷小。 【注意】无穷多个无穷小的代数和
6、未必是无穷小。 例如,时是无穷小,但个之和为1,不是无穷小。(4)无穷小量与有界量的乘积为无穷小量。 如:,1.3无穷小量阶的比较及等价无穷小量的定义1)若 ,则称当时,是高阶无穷小,或称为的低阶无穷小,记作= ().特别,f为当x时的无穷小量记作 = ().2)若存在正数K和L,使得在某上有,则称与为当时的同阶无穷小量.特别当时,则称与必为当同阶无穷小。3) 若,则称与是当时的等价无穷小量.记为.注:当x0 时,与 虽然都是无穷小量,却不能进行阶的比较,所以在进行阶的比较时还要注意有没有意义。二、等价无穷小量2.1等价无穷小量的重要性质设, 等均为同一自变量变化过程中的无穷小。性质一:若,
7、且存在,则 ()性质二:若,则.性质一是等价无穷小量商的极限求法;性质二是等价无穷小量的传递性.2.2一些常用的等价无穷小量: (当 时)(1); (2); (3); (4); (5); (6);(7); (8). 三、极限问题的解法3.1 可以直接求极限的问题3.1.1 直接将的代入所求极限的函数中去,若存在,即为其极限。 例1 若不存在,可以代入进去,看分子分母的值判断属于哪一类型,再做打算。 例如: 就不能直接代入,但可以知道这是一个型的不定式,我们可以用以下的方法来求解。3.1.2 (因式分解): 例2 。3.1.3 (分子(分母)有理化): 例33.2用两个重要极限求极限在高等数学里
8、, 有两个极限是很重要的,在求极限上很有用。这里我们只写出结论来,证明省略:(1) (2) 很多时候我们都会用到这两个重要的极限去快速的解决一些特殊的极限问题,列举两个例题:例4 求 例5 求解 可是这两个重要极限的使用也有其局限性,对于更一般的极限,就不能用了,我们只能另辟蹊径。3.3用洛必达法则求极限我们定义两个无穷小或两个无穷大量之比的极限为型或型不定式极限。这两种情况都不能直接用商的极限运算法则计算。而导数就是讨论型不定式极限的,所以,我们可以用导数作为工具来研究一般不定式的极限。这种方法我们称之为“洛必达法则”。例6 解:很明显这里是不能直接代入1的,用以上几种方法都显得“鸡肋”,我
9、们用洛必达法则试试。则有:(分子分母同时求导)用洛必达法则很容易就得出结果,那么看一下下面这个例题例7 (1),现在我们直接使用洛比达法则,则 (2)会发现,分子分母上的求导运算越来越复杂,并没有起到简化的作用。那么怎么办呢?我们这时候要想到等价无穷小替换,如果在第(1)步中对分母上的无穷小量用等价无穷小量来替换,则这时再使用洛比达法则,运算过程就变的简单了。同样的我们看到下面这个例题: 例8 解: 原式 (用洛必达法则) (将x=0代入) (用洛必达法则)用洛必达法则求不出结果,会一直循环下去.怎么办?用等价无穷小量代换.3.4用等价无穷小量求极限回到上面的例8,因为xsinxtanx(x0
10、),所以,原式= =1,问题迎刃而解。我们再一次看到了洛必达法则的局限性以及等价无穷小替换的方便。例9 解 当时,.同样的,这里如果只使用洛必达法则,上式越变越复杂,求出结果也是累的半死.改用等价无穷小替换就方便的多了。那么是不是任何时候都可以用等价无穷小来替换呢?3.5等价无穷小代换的局限性下面我们通过一个例题来具体讨论一下:例10:(1) (2)先算第(1)题,利用重要极限和运算法则直接求: 如果改用等价无穷小替换: 明显这是一个错误的结论。同样的第(2)题也利用重要极限和运算法则直接求: 改用等价无穷小计算: 结果与上式相同.可是为什么会这样呢?有的可以作等价替换,而有的题目作替换后就出
11、错?【注意】两个函数相减时就不能随便用等价无穷小替换了。那么怎么判断两个函数相减时用等价无穷小替换到底是不是合适的呢?其实我们只要搞清楚等价无穷小代换的实质,原因就出在它的余项上。第(1)题若用等价无穷小,实际上应当为因为分子是的高阶无穷小,而不是的高阶无穷小,所以不一定等于零。第(2)题中.【注】无穷小量的的和,差,积还是无穷小量。这里分子是的高阶无穷小,那么分子与的比值的极限为零。也就是余项的阶数一定要统一,在余项的阶数不同的情况下,就不可随便等价代换。以上结果说明在错用等价无穷小量时,一般是阶数的判断上出现错误,那么阶数应该怎么求呢?请看下面的例题3.6阶数的求法例11 解 例12 证:
12、所以,当。也就是,只要使得两个作比较的无穷小量的极限的是常数,此时,与之作比较的变量的幂就是阶数。如果作比较的无穷小量阶数不同,即等价无穷小替换出现条件限制,而使用洛必达法则又很复杂的情况下,我们还可以考虑使用泰勒公式。3.7利用泰勒公式求函数极限泰勒定理:若函数在a,b上存在直至n阶的连续导函数,在(a,b)内存在(n+1)阶导函数,则对任意给定的a,b,至少存在一点(a,b),使得一般我们用到的都是时的特殊形式:也称为(带有佩亚诺余项的)麦克劳林公式。下面我们将用到这两个公式,让我们将例10稍作修改,以便计算第(1)题求改为 求同样,是在时,将与作比较,所以将和都要展开到项,有如下展开式:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等价 无穷 小量 极限 中的 应用 毕业论文
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4195178.html